Skip to main content
Log in

Optimization of β-carotene production by a mutant of the lactose-positive yeast Rhodotorula acheniorum from whey ultrafiltrate

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The present work investigated on carotenogenesis with high β-carotene content by a new isolated high-activity strain-producer Rhodotorula acheniorum mutant MRN in cheese whey ultrafiltrate. After a serial of UV, ethymethanesurfonate (EMS), and nitrosoguanidine (NTG) mutagenesis, a mutant named MRN of the red lactose-positive yeast strain R. acheniorum was obtained. Then, the effects of different growth medium factors on carotenoid production by this mutant at batch-scale level were identified and optimized by means of response surface methodology (RSM) in order to achieve high-level production of β-carotene. The optimum conditions required to achieve the highest level of β-carotene (262.12±1.01 mg/L) were determined as follows: whey ultrafiltrate (WU) lactose concentration 55 g/L, pH 5.85, ammonium sulfate concentration 3.5 g/L, temperature 23°C, and aeration rate 1.56 vvm. The medium optimization resulted in a 6.45-fold increase in volumetric production (262.12±1.01 mg/L) and a 4.62-fold increase in the cellular accumulation (10.69±0.19 mg/g) of β-carotene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Perera CO, Yen GM. Functional properties of carotenoids in human health. Int. J. Food. Prop. 10: 201–230 (2007)

    Article  CAS  Google Scholar 

  2. Bhosale P, Bernstein PS. Microbial xanthophylls. Appl. Microbiol. Biot. 68: 445–455 (2005)

    Article  CAS  Google Scholar 

  3. Bhosale P. Environmental and cultural stimulants in the production of carotenoids from microorganisms. Appl. Microbiol. Biot. 63: 351–361 (2004)

    Article  CAS  Google Scholar 

  4. Razavi SH, Mosavi SM, Yeganeh HM, Marc I. Fatty acid and carotenoid production by Sporobolomyces ruberrimus when using technical glycerol and ammonium sulfate. J. Microbiol. Biotechn. 17: 1591–1597 (2007)

    CAS  Google Scholar 

  5. An GH, Jang BG, Cho MH. Cultivation of the carotenoid-hyperproducing mutant 2A2N of the red yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma) with molasses. J. Biosci. Bioeng. 92: 121–125 (2001)

    Article  CAS  Google Scholar 

  6. Kvasnikov E, Grinberg T, Vaskivnjuk V, Nagornaja S, Sudenko V, Stelokova I. Yeasts synthesizing carotenoids. Izv. AN SSSR Biol.+ 4: 565–575 (1978)

    Google Scholar 

  7. Aksu Z, Eren AT. Carotenoids production by the yeast Rhodotorula mucilaginosa: Use of agricultural wastes as a carbon source. Process Biochem. 40: 2985–2991 (2005)

    Article  CAS  Google Scholar 

  8. Libkind D, Broock M. Biomass and carotenoid pigment production by patagonian native yeasts. World J. Microb. Biot. 22: 687–692 (2006)

    Article  CAS  Google Scholar 

  9. Libkind D, Gadanho M, van Broock MR, Sampaio JP. Sporidiobolus longiusculus sp. nov. and Sporobolomyces patagonicus sp. nov., novel yeasts of the Sporidiobolales isolated from aquatic environments in Patagonia, Argentina. Int. J. Syst. Evol. Micr. 55: 503–509 (2005)

    Article  CAS  Google Scholar 

  10. Perrier V, Dubreucq E, Galzy P. Fatty acid and carotenoid composition of Rhodotorula strains. Arch. Microbiol. 164: 173–179 (1995)

    Article  CAS  Google Scholar 

  11. Bhosale P, Gadre RV. Manipulation of temperature and illumination conditions for enhanced β-carotene production by mutant 32 of Rhodotorula glutinis. Lett. Appl. Microbiol. 34: 349–353 (2002)

    Article  CAS  Google Scholar 

  12. Buzzini P, Martini A. Production of carotenoids by strains of Rhodotorula glutinis cultured in raw materials of agro-industrial origin. Bioresource Technol. 71: 41–44 (1999)

    Article  Google Scholar 

  13. Simova ED, Frengova GI, Beshkova DM. Synthesis of carotenoids by Rhodotorula rubra GED8 co-cultured with yogurt starter cultures in whey ultrafiltrate. J. Ind. Microbiol. Biot. 31: 115–121 (2004)

    Article  CAS  Google Scholar 

  14. Frengova GI, Simova ED, Pavlova K, Beshkova DM, Grigorova D. Formation of carotenoids by Rhodotorula glutinis in whey ultrafiltrate. Biotechnol. Bioeng. 44: 888–894 (1994)

    Article  CAS  Google Scholar 

  15. Frengova GI, Simova ED, Beshkova DM. Effect of temperature changes on the production of yeast pigments co-cultivated with lactic acid in whey ultrafiltrate. Biotechnol. Lett. 17: 1001–1006 (1995)

    Article  CAS  Google Scholar 

  16. Frengova GI, Simova ED, Beshkova DM. Carotenoid production by lactose-negative yeasts co-cultivated with lactic acid bacteria in whey ultrafiltrate. Z. Naturforsch C. 58: 562–567 (2003)

    CAS  Google Scholar 

  17. Simova ED, Frengova GI, Beshkova DM. Effect of aeration on the production of carotenoid pigments by Rhodotorula rubra-lactobacillus casei Subsp. casei co-cultures in whey ultrafiltrat. Z. Naturforsch. C. 58: 225–229 (2003)

    CAS  Google Scholar 

  18. Razavi SH, Fabrice B, Marc I. UV-HPLC/APCI-MS method for separation and identification of the carotenoids produced by Sporobolomyces ruberrimus H110. Iran. J. Chem. Chem. Eng. 25: 1–10 (2006)

    CAS  Google Scholar 

  19. Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426–430 (1959)

    Article  CAS  Google Scholar 

  20. Liu Y, Wu JY. Optimization of cell growth and carotenoid production of Xanthophyllomyces dendrorhous through statistical experiment design. Biochem. Eng. J. 36: 182–189 (2007)

    Article  Google Scholar 

  21. Matelli HL, Silva DI, Souza NO, Pomeroy D. Production of β-carotene by Rhodotorula strain grown on sugar cane juice. Biotechnol. Lett. 12: 207–208 (1990)

    Article  CAS  Google Scholar 

  22. Buzzini P, Martini A, Gaetani M, Turchetti B, Pagnoni UM, Davoli P. Optimization of carotenoid production by Rhodotorula graminis DBVPG 7021 as a function of trace element concentration by means of response surface analysis. Enzyme Micro. Tech. 36: 687–692 (2005)

    Article  CAS  Google Scholar 

  23. Girard P, Falconnier B, Bricout J, Vladescu B. β-Carotene producing mutants of Phaffia rhodozyma. Appl. Microbiol. Biot. 41: 183–191 (1994)

    Article  CAS  Google Scholar 

  24. Mosqueda-Cano G, Gutierrez-Corona JF. Environmental and developmental regulation of carotenogenesis in the dimorphic fungus Mucor rouxii. Curr. Microbiol. 31: 141–145 (1995)

    Article  CAS  Google Scholar 

  25. Orset SC, Young AJ. Exposure to low irradiances favors the synthesis of 9-cis β,β-carotene in Dunaliella salina (Teod.). Plant Physiol. 122: 609–618 (2000)

    Article  CAS  Google Scholar 

  26. Ben-Amotz A. Effect of low temperature on the stereoisomer composition of β-carotene in the halotolerant alga Dunaliella bardawil (Chlorophyta). J. Phycol. 32: 272–275 (1996)

    Article  CAS  Google Scholar 

  27. Shlomai P, Ben-Amotz A, Margalith P. The effect of veratrole on carotenoid biosynthesis by Phycomyces blakesleeanus. J. Appl. Bacteriol. 70: 166–168 (1991)

    CAS  Google Scholar 

  28. Choudhari SM, Ananthanarayan L, Singhal RS. Use of metabolic stimulators and inhibitors for enhanced production of β-carotene and lycopene by Blakeslea trispora NRRL 2895 and 2896. Bioresource Technol. 99: 3166–3173 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Hadi Razavi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nasrabadi, M.R.N., Razavi, S.H. Optimization of β-carotene production by a mutant of the lactose-positive yeast Rhodotorula acheniorum from whey ultrafiltrate. Food Sci Biotechnol 20, 445–454 (2011). https://doi.org/10.1007/s10068-011-0062-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-011-0062-1

Keywords

Navigation