Skip to main content
Log in

Mapping QTLs for tissue culture response in soybean (Glycine max (L.) Merr.)

  • Published:
Molecules and Cells

Abstract

Quantitative trait loci (QTLs) that control the tissue culture response in soybean were detected by using 184 recombinant inbred lines (RILs) derived from two varieties: Kefeng No.1 and Nannong 1138-2. The molecular map consisting of 834 molecular markers using this population covered space 2307.83 cM of the genome throughout 24 linkage groups. The performance of tissue culture in soybean was evaluated by two indices: callus induction frequency (CIF) and somatic embryos initiation frequency (SEIF). They were expressed as the number of explants producing callus/ the number of total explants and the number of explants producing somatic embryos/ the number of total explants, respectively. The RIL lines showed continuous segregation for both indices. With the composite interval mapping (CIM) described in Windows QTL Cartographer Version 2.5, three quantitative trait loci (QTLs) were identified for the frequency of callus induction, on chromosomes B2 and D2, accounting for phenotypic variation from 5.84% to 16.60%; four QTLs on chromosome G were detected for the frequency of somatic embryos initiation and explained the phenotypic variation from 7.79% to 14.16%. The information of new QTLs identified in the present study will contribute to genetic improvement of regeneration traits with marker-assisted selection (MAS) in soybean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong, C.L., Romero-Severson, J., and Hodges, T.K. (1992). Improved tissue culture response of an elite maize inbred through backcross breeding and identification of chromosomal regions important for regeneration by RFLP analysis. Theor. Appl. Genet. 84, 755–762.

    Article  Google Scholar 

  • Bolibok, H., and Rakoczy-Trojanowska, M. (2006). Genetic mapping of QTLs for tissue-culture response in plants. Euphytica 149, 73–83.

    Article  CAS  Google Scholar 

  • Bolibok, H., Gruszczynska, A., Hromada-Judycka, A., and Rakoczy-Trojanowska, M. (2007). The identification of QTLs associated with the in vitro response of rye (Secale cereale L.). Cell. Mol. Biol. Lett. 12, 523–535.

    Article  PubMed  CAS  Google Scholar 

  • Churchill, G., and Doerge, R.W. (1994). Empirical threshold values for quantitative triat mapping. Genetics 138, 963–971.

    PubMed  CAS  Google Scholar 

  • Flores Berrios, E.L., Sarrafi, A., Fabre, F., Alibert, G., and Gentzbittel, L. (2000). Genotypic variation and chromosomal location of QTLs for somatic embryogenesis revealed by epidermal layers culture of recombinant inbred lines in the sunflower (Helianthus annuus L.). Theor. Appl. Genet. 101, 1307–1312.

    Article  Google Scholar 

  • Flores Berrios, E.L., Gentzbittel, H., Kayyal, G., Alibert, A., and Sarrafi, A. (2000). AFLP mapping of QTLs for in vitro organogenesis traits using recombinant inbred lines in sunflower (Helianthus annuusL.). Theor. Appl. Genet. 101, 1299–1306.

    Article  Google Scholar 

  • Gamborg, O.L., Miller, R.A., and Ojima, K. (1968). Nutrient requirement of suspension cultures of soybean root cells. Exp. Cell. Res. 50, 151–158.

    Article  PubMed  CAS  Google Scholar 

  • He, P., Shen, L., Lu, C., Chen, Y., and Zhu, L. (1998). Analysis of quantitative trait loci which contribute to anther culturability in rice (Oryza sativa L.). Mol. Breed. 4, 165–172.

    Article  CAS  Google Scholar 

  • Henry, Y., Vain, P., and Buyser, J.D. (1994). Genetic analysis of in vitro plant tissue culture responses and regeneration capacities. Euphytica 79, 45–58.

    Article  Google Scholar 

  • Hofmann, N., Nelson, R.L., and Korban, S.S. (2004). Influence of medium components and pH on somatic embryo induction in three genotypes of soybean. Plant Cell, Tissue and Organ Culture 77, 157–163.

    Article  CAS  Google Scholar 

  • Jia, H., Yi, D., Yu, J., Xue, S., Xiang, Y., Zhang, C., Zhang, Z., Zhang, L., and Ma, Z. (2007). Mapping QTLs for tissue culture response of mature wheat embryos. Mol. Cells 23, 323–330.

    PubMed  Google Scholar 

  • Khalafalla, M.M., El-Shemy, H.A., Rahman, S.M., Teraishi, M., Hasegawa, H., Terakawa, T., and Ishimoto, M. (2006). Efficient production of transgenic soybean (Glycine max [L] Merrill) plants mediated via whisker-supersonic (WSS) method. African J. Biotech. 5, 1594–1599.

    CAS  Google Scholar 

  • Komatsuda, T., Taguchi-Shiobara, F., Oka, S., Takaiwa, F., Annaka, T., and Jacobson, H.J. (1995). Transfer and mapping of the shoot differentiation locus Shd1 in barley chromosome 2. Genome 38, 1009–1014.

    Article  PubMed  CAS  Google Scholar 

  • Koornneef, M., Bade, J., Hanhart, C., Horsman, K., Schel, J., Soppe, W., Verkerk, R., and Zabel, P. (1993). Characterization and mapping of a gene controlling shoot regeneration in tomato. Plant J. 3, 131–141.

    Article  CAS  Google Scholar 

  • Kosambi, D.D. (1943). The estimation of map distances from recombination values. Ann. Hum. Genet. 12, 172–175.

    Article  Google Scholar 

  • Krakowsky, M.D., Lee, M., Garay, L., Woodman-Clikeman, W., Long, M.J., Sharopova, N., Frame, B., and Wang, K. (2006). Quantitative trait loci for callus initiation and totipotency in maize (Zea mays L.). Theor. Appl. Genet. 113, 821–830.

    Article  PubMed  CAS  Google Scholar 

  • Kwon, Y.S., Kim, K.M., Eun, M.Y., and Sohn, J.K. (2002). QTL mapping and associated marker selection for the efficacy of green plant regeneration in anther culture of rice. Plant Breeding 12, 10–16.

    Article  Google Scholar 

  • Lazzeri, P.A., Hildebrand, D.F., and Collins, G.B. (1985). A procedure for plant regeneration from immature cotyledon tissue of soybean. Plant Mol. Biol. Rep. 3, 160–167.

    Article  Google Scholar 

  • Manninen, O.M. (2000). Associations between anther-culture response and molecular markers on chromosomes 2H, 3H and 4H of barley (Hordeum vulgare L.). Theor. Appl. Genet. 100, 57–62.

    Article  CAS  Google Scholar 

  • Mano, Y., and Komatsuda, T. (2002). Identification of QTLs controlling tissue-culture traits in barley (Hordeum vulgare L.). Theor. Appl. Genet. 105, 708–715.

    Article  PubMed  CAS  Google Scholar 

  • Murashige, T., and Skoog, F. (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Plant 15, 473–497.

    Article  CAS  Google Scholar 

  • Murigneux, A., Bentollila, S., Hardy, T., Baud, S., Guitton, C., Jullien, H., Ben Tahar, S., Freyssinet, G., and Beckert, M. (1994). Genotypic variation of quantitative trait loci controlling in vitro androgenesis in maize. Genome 37, 970–976.

    Article  PubMed  CAS  Google Scholar 

  • Panthee, D.R., Pantalone, V.R., Sams, C.E., Saxton, A.M., West, D.R., and Rayford, W.E. (2004). Genomic regions governing soybean seed nitrogen accumulation. J. Am. Oil Chem. Soc. 81, 77–82.

    Article  CAS  Google Scholar 

  • Paz, M.M., Shou, H., Guo, Z., Zhang, Z., Banerjee, A.K., and Wang, K. (2004). Assessment of conditions affecting Agrobacteriummediated soybean transformation using the cotyledonary node explant. Euphytica 136, 167–179.

    Article  CAS  Google Scholar 

  • Paz, M.M., Martinez, J.C., Kalvig, A.B., Fonger, T.M., and Wang, K. (2006). Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Rep. 25, 206–213.

    Article  PubMed  CAS  Google Scholar 

  • Qi, B., Korir, P., Zhao, T., Yu, D., Chen, S., and Gai, J. (2008). Mapping quantitative trait loci associated with Aluminum toxin tolerance in NJRIKY recombinant inbred line population of soybean (Glycine max). J. Integr. Plant Biol. 50, 1089–1095.

    Article  PubMed  CAS  Google Scholar 

  • Reichert, N.A., Young, M.M., and Woods, A.L. (2003). Adventitious organogenic regeneration from soybean genotypes representing nine maturity groups. Plant Cell, Tissue and Organ Culture 75, 273–277.

    Article  Google Scholar 

  • Sairam R.V., Franklin, G., Hassel, R., Smith, B., Meeker, K., Kashikar, N., Parani, M., Abed, D.A., Ismail, S., Berry, K., et al. (2003). A study on the effect of genotypes, plant growth regulators and sugars in promoting plant regeneration via organogenesis from soybean cotyledonary nodal callus. Plant Cell, Tissue and Organ Culture 75, 79–85.

    Article  CAS  Google Scholar 

  • Taguchi-Shiobara, F., Komatsuda, T., and Oka, S. (1997). Comparison of two indices for evaluating regeneration ability in rice (Oryza sativa L.) through a diallel analysis. Theor. Appl. Genet. 94, 378–382.

    Article  Google Scholar 

  • Taguchi-Shiobara, F., Yamamoto, T., Yano, M., and Oka, S. (2006). Mapping QTLs that control the performance of rice tissue culture and evaluation of derived near-isogenic lines. Theor. Appl. Genet. 112, 968–976.

    Article  PubMed  CAS  Google Scholar 

  • Torp, A.M., Hansen, A.L., and Andersen, S.B. (2001). Chromosomal regions associated with green plant regeneration in wheat (Triticum aestivum L.) anther culture. Euphytica 119, 377–387.

    Article  CAS  Google Scholar 

  • Van-Ooijen, J.W., and Voorrips, R.E. (2002). JOINMAP 3.0, Software for the calculation of genetic linkage maps. Plant Research Int. Wageningen, the Netherlands.

    Google Scholar 

  • Wan, Y., Rocheford, T.R., and Widholm, J.M. (1992). RFLP analysis to identify putative chromosomal regions involved in the anther culture response and callus formation of maize. Theor. Appl. Genet. 85, 360–365.

    Article  CAS  Google Scholar 

  • Wang, S., Basten, C.J., and Zeng, Z.B. (2006). Windows QTL Cartographer 2.5. Department of Statistics. North Carolina State University, Raleigh.

    Google Scholar 

  • Wilcox, J.R. (2004). World distribution and trade of soybean. In Soybeans: Improvement, Production and Uses, H.R., Boerma, and J.E., Specht, eds. (Agronomy Monograph 16, 3rd eds. (American Society of Agronomy/Crop Science Society of America/ Soil Science Society of America, Madison), pp. 1–13.

  • Yang, C., Zhao, T., Yu, D., and Gai, J. (2009). Somatic embryogenesis and plant regeneration in Chinese soybean (Glycine max (L.) Merr.) — impacts of mannitol, abscisic acid, and explant age. In vitro cellular & developmental biology — Plant 45, 180–188.

    CAS  Google Scholar 

  • Yu, K., and Pauls, K. (1993) Identification of a RAPD marker associated with somatic embryogenesis in alfalfa. Plant Mol. Biol. 22, 269–277.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junyi Gai.

About this article

Cite this article

Yang, C., Zhao, T., Yu, D. et al. Mapping QTLs for tissue culture response in soybean (Glycine max (L.) Merr.). Mol Cells 32, 337–342 (2011). https://doi.org/10.1007/s10059-011-0063-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-011-0063-1

Keywords

Navigation