Skip to main content
Log in

Structure and expression of OsUBP6, an ubiquitin-specific protease 6 homolog in rice (Oryza sativa L.)

  • Published:
Molecules and Cells

Abstract

Although the possible cellular roles of several ubiquitin-specific proteases (UBPs) were identified in Arabidopsis, almost nothing is known about UBP homologs in rice, a monocot model plant. In this report, we searched the rice genome database (http://signal.salk.edu/cgi-bin/RiceGE) and identified 21 putative UBP family members (OsUBPs) in the rice genome. These OsUBP genes each contain a ubiquitin carboxyl-terminal hydrolase (UCH) domain with highly conserved Cys and His boxes and were subdivided into 9 groups based on their sequence identities and domain structures. RT-PCR analysis indicated that rice OsUBP genes are expressed at varying degrees in different rice tissues. We isolated a full-length cDNA clone for OsUBP6, which possesses not only a UCH domain, but also an N-terminal ubiquitin motif. Bacterially expressed OsUBP6 was capable of dismantling K48-linked tetraubiquitin chains in vitro. Quantitative real-time RT-PCR indicated that OsUBP6 is constitutively expressed in different tissues of rice plants. An in vivo targeting experiment showed that OsUBP6 is predominantly localized to the nucleus in onion epidermal cells. We also examined how knock-out of OsUBP6 affects developmental growth of rice plants. Although homozygous T3 osubp6 T-DNA insertion mutant seedlings displayed slower growth relative to wild type seedlings, mature mutant plants appeared to be normal. These results raise the possibility that loss of OsUBP6 is functionally compensated for by an as-yet unknown OsUBP homolog during later stages of development in rice plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An, S., Park, S., Jeong, D.H., Lee, D.Y., Kang, H.G., Yu, J.H., Hur, J., Kim, S.R., Kim, Y.H., Lee, M., et al. (2003). Generation and analysis of end sequence database for T-DNA tagging lines in rice. Plant Physiol. 133, 2040–2047.

    Article  CAS  PubMed  Google Scholar 

  • Bonnet, J., Romier, C., Tora, L., and Devys, D. (2008). Trends Biochem. Sci. 33, 369–375.

    CAS  Google Scholar 

  • Byun, M.Y., Hong, J.-P., and Kim, W.T. (2008). Identification and characterization of three telomere repeat-binding factors in rice. Biochem. Biophys. Res. Commun. 372, 85–90.

    Article  CAS  PubMed  Google Scholar 

  • Cho, S.K., Ryu, M.Y., Song, C., Kwak, J.M., and Kim, W.T. (2008). Arabidopsis PUB22 and PUB23 are homologous U-box E3 ubiquitin ligases that play combinatory roles in response to drought stress. Plant Cell 20, 1899–1914.

    Article  CAS  PubMed  Google Scholar 

  • Doelling, J.H., Yan, N., Kurepa, J., Walker, J., and Vierstra, R.D. (2001). The ubiquitin-specific protease UBP14 is essential for early embryo development in Arabidopsis thaliana. Plant J. 27, 393–405.

    Article  CAS  PubMed  Google Scholar 

  • Doelling, J.H., Phillips, A.R., Soyler-Ogretim, G., Wise, J., Chandler, J., Callis, J., Otegui, M.S., and Vierstra, R.D. (2007). The ubiquitin-specific protease subfamily UBP3/UBP4 is essential for pollen development and transmission in Arabidopsis. Plant Physiol. 145, 801–813.

    Article  CAS  PubMed  Google Scholar 

  • Dreher, K., and Callis, J. (2007). Ubiquitin, hormones and biotic stress in plants. Ann. Bot. 99, 787–822.

    Article  CAS  PubMed  Google Scholar 

  • Glickman, M.H., and Ciechanover, A. (2002). The ubiquitin-proteasome proteolytic pathway: Destruction for the sake of construction. Physiol. Rev. 82, 373–428.

    CAS  PubMed  Google Scholar 

  • Hong, J.-P., Kim, S.M., Ryu, M.Y., Choe, S., Park, P.B., An, G., and Kim, W.T. (2005). Structure and expression of OsMRE11 in rice. J. Plant Biol. 48, 229–236.

    Article  CAS  Google Scholar 

  • Hong, J.-P., Byun, M.Y., Koo, D., An, K., Bang, J., Chung, I.K., An, G., and Kim, W.T. (2007). Suppression of rice telomere binding protein1 results in severe and gradual developmental de-fects accompanied by genome instability in rice. Plant Cell 19, 1770–1781.

    Article  CAS  PubMed  Google Scholar 

  • Hu, M., Li, P., Song, L., Jeffrey, P.D., Chernova, T.A., Wilkinson, K.D., Cohen, R.E., and Shi, Y. (2005). Structure and mechanisms of the proteasome-associated deubiquitinating enzyme USP14. EMBO J. 24, 3747–3756.

    Article  CAS  PubMed  Google Scholar 

  • Jeon, J.S., Lee, S., Jung, K.H., Jun, S.H., Jeong, D.H., Lee, J., Kim, C., Jang, S., Yang, K., Nam, J., et al. (2000). T-DNA insertional mutagenesis for functional genomics in rice. Plant J. 22, 561–570.

    Article  CAS  PubMed  Google Scholar 

  • Joo, S., and Kim, W.T. (2007). A gaseous plant hormone ethylene: The signaling pathway. J. Plant Biol. 50, 109–116.

    Article  CAS  Google Scholar 

  • Kim, S.Y. (2007). Recent advances in ABA signaling. J. Plant Biol. 50, 117–121.

    Article  CAS  Google Scholar 

  • Kim, J.H., Cheon, Y.M., Kim, B.-G., and Ahn, J.-H. (2008). Analysis of flavonoids and characterization of the OsFNS gene involved in flavone biosynthesis in rice. J. Plant Biol. 51, 97–101.

    Article  CAS  Google Scholar 

  • Komander, D., Clague, M.J., and Urbe, S. (2009). Breaking the chains: structure and function of the deubiquitinases. Nat. Rev. Mol. Cell Biol. 10, 550–563.

    Article  CAS  PubMed  Google Scholar 

  • Kraft, E., Stone, S.L., Ma, L., Su, N., Gao, Y., Lau, O.-S., Deng, X.-W., and Callis, J. (2005). Genome analysis and functional characterization of the E2 and RING-type E3 ligase ubiquitination enzymes of Arabidopsis. Plant Physiol. 139, 1597–1611.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J.-H., Hong, J.-P., Oh, S.-K., Lee, S., Choi, D., and Kim, W.T. (2004). The ethylene-responsive factor like protein 1 (Ca ERFLP1) of hot pepper (Capsicum annuum L.) interacts in vitro with both GCC and DRE/CRT sequences with different binding affinities: possible biological roles of CaERFLP1 in response to pathogen infection and high salinity conditions in transgenic tobacco plants. Plant Mol. Biol. 55, 61–81.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J.-H., Deng, X.W., and Kim, W.T. (2006). Possible role of light in the maintenance of EIN3/EIL1 stability in Arabidopsis seedlings. Biochem. Biophys. Res. Commun. 350, 484–491.

    Article  CAS  PubMed  Google Scholar 

  • Lee, H., Oh, H.J., Ahn, H.M., Oh, C.J., Jeong, J.-H., Jeon, G.L., An, C.S., Choi, S.-B., and Kim, H.B. (2008). A sterol biosynthetic gene AtCYP51A2 promoter for constitutive and ectopic expression of a transgenic plants. J. Plant Biol. 51, 359–365.

    Article  CAS  Google Scholar 

  • Lee, H.K., Cho, S.K., Son, O., Xu, Z., Hwang, I., and Kim, W.T. (2009). Drought stress-induced Rma1H1, a RING membraneanchor E3 ubiquitin ligase homolog, regulates aquaporin levels via ubiquitination in transgenic Arabidopsis plants. Plant Cell 21, 622–641.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Wang, F., Zhang, H., He, H., Ma, L., and Deng, X.W. (2008). Functional characterization of the Arabidopsis ubiquitin-specific protease gene family reveals specific role and redundancy of individual members in development. Plant J. 55, 844–856.

    Article  CAS  PubMed  Google Scholar 

  • Love, K.R., Catic, A., Schlieker, C., and Ploegh, H.L. (2007). Mechanisms, biology and inhibitors of deubiquitinating enzymes. Nat. Chem. Biol. 3, 697–705.

    Article  CAS  PubMed  Google Scholar 

  • Luo, M., Luo, M.-Z., Buzas, D., Finnegan, J., Helliwell, C., Dennis, E.S., Peacock, W.J., and Chaudhury, A. (2008). UBIQUITINSPECIFIC PROTEASE 26 is required for seed development and the repression of PHERES1 in Arabidopsis. Genetics 180, 229–236.

    Article  CAS  PubMed  Google Scholar 

  • Moon, J., Parry, G., and Estelle, M. (2004). The Ubiquitin-proteasome pathway and plant development. Plant Cell 16, 3181–3195.

    Article  CAS  PubMed  Google Scholar 

  • Moon, B.C., Choi, M.S., Kang, Y.H., Kim, M.C., Cheong, M.S., Park, C.Y., Yoo, J.H., Koo, S.C., Lee, S.M., Lim, C.O., et al. (2005). Arabidopsis ubiquitin-specific protease 6 (AtUBP6) interacts with calmodulin. FEBS Lett. 579, 3885–3890.

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay, D., and Riezman, H. (2007). Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315, 201–205.

    Article  CAS  PubMed  Google Scholar 

  • Nijman S.M.B., Luna-Vargas, M.P.A., Velds, A., Brummelkamp, T.R., Dirac, A.M.G., Sixma, T.K., and Bernards, R. (2005). A genome and functional inventory of deubiquitinating enzymes. Cell 123, 773–786.

    Article  CAS  PubMed  Google Scholar 

  • Pickart, C.M., and Eddins, M.J. (2004). Ubiquitin: structures, functions, mechanisms. Biochim. Biophys. Acta 1695, 55–72.

    Article  CAS  PubMed  Google Scholar 

  • Rao-Naik, C., Chandler, J.S., McArdle, B., and Callis, J. (2000). Ubiquitin-specific proteases from Arabidopsis thaliana: Cloning of AtUBP5 and analysis of substrate specificity of AtUBP3, AtUBP4, and AtUBP5 using Escherichia coli in vivo and in vitro assays. Arch. Biochem. Biophys. 379, 198–208.

    Article  CAS  PubMed  Google Scholar 

  • Seo, Y.S., Kim, E.Y., Mang, H.G., and Kim, W.T. (2008). Heterologous expression and biochemical and cellular characterization of CaPLA1 encoding a hot pepper phospholipase A1 homolog. Plant J. 53, 895–908.

    Article  CAS  PubMed  Google Scholar 

  • Seo, Y.S., Kim, E.Y., Kim, J.H., and Kim, W.T. (2009). Enzymatic characterization of class I DAD1-like acylhydrolase members targeted to chloroplast in Arabidopsis. FEBS Lett. 583, 2301–2307.

    Article  CAS  PubMed  Google Scholar 

  • Schmitz, R.J., Tamada, Y., Doyle, M.R., Zhang, X., and Amasino, R.M. (2009). Histone H2B deubiquitination is required for transcriptional activation of FLOWERING LOCUS C and for proper control of flowering in Arabidopsis. Plant Physiol. 149, 1196–1204.

    Article  CAS  PubMed  Google Scholar 

  • Smalle, J., and Vierstra, R.D. (2004). The ubiquitin 26S proteasome proteolytic pathway. Annu. Rev. Plant Biol. 55, 555–590.

    Article  CAS  PubMed  Google Scholar 

  • Son, O., Cho, S.K., Kim, E.U., and Kim, W.T. (2009). Characterization of three Arabidopsis homologs of human RING membrane anchor E3 ubiquitin ligase. Plant Cell Rep. 28, 561–569.

    Article  CAS  PubMed  Google Scholar 

  • Sridhar, V.V., Kapoor, A., Zhang, K., Zhu, J., Zhou, T., Hasegawa, P.M., Bressan, R.A., and Zhu, J.-K. (2007). Control of DNA methylation and heterochromatic silencing by histone H2B deubiquitination. Nature 447, 735–738.

    Article  CAS  PubMed  Google Scholar 

  • Stone, S.L., Hauksdottir, H., Troy, A., Herschleb, J., Kraft, E., and Callis, J. (2005). Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiol. 137, 13–30.

    Article  CAS  PubMed  Google Scholar 

  • Vierstra, R.D. (2003). The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci. 8, 135–142.

    Article  CAS  PubMed  Google Scholar 

  • Vierstra, R.D. (2009). The ubiquitin-26S proteasome system at the nexus of plant biology. Nat. Rev. Mol. Cell. Biol. 10, 385–397.

    Article  CAS  PubMed  Google Scholar 

  • Yan, N., Doelling, J.H., Falbel, T.G., Durski, A.M., and Vierstra, R.D. (2000). The ubiquitin-specific protease family from Arabidopsis. AtUPB1 and 2 are required for the resistance to the amino acid analog canavanine. Plant Physiol. 124, 1828–1843.

    Article  CAS  PubMed  Google Scholar 

  • Yang, P., Smalle, J., Lee, S., Yan, N., Emborg, T.J., and Vierstra, R.D. (2007). Ubiquitin C-terminal hydrolases 1 and 2 affect shoot architecture in Arabidopsis. Plant J. 51, 441–457.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woo Taek Kim.

Additional information

These authors contributed equally to this work.

About this article

Cite this article

Moon, Y.K., Hong, JP., Cho, YC. et al. Structure and expression of OsUBP6, an ubiquitin-specific protease 6 homolog in rice (Oryza sativa L.). Mol Cells 28, 463–472 (2009). https://doi.org/10.1007/s10059-009-0138-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-009-0138-4

Keywords

Navigation