Skip to main content
Log in

A sterol biosynthetic geneAtCYP51A2 promoter for constitutive and ectopic expression of a transgene in plants

  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Arabidopsis CYP51A2 (AtCYP51A2) mediates the sterol 14α-demethylation step inde novo sterol biosynthesis, and is constitutively and highly expressed in all plant tissues (Kim et al., 2005). We exploited the molecular features of its expression and the fundamental role of sterol biosynthesis in cells to develop a plant-derived promoter. Our GUS expression analysis between transgenicArabidopsis lines forAtCYP51A2::GUS and35S::GUS revealed that activity of theAtCYP51A2 promoter was comparable to that of the35S promoter, based on enzymatic activities and protein levels. TheAtCYP51A2 promoter was also constitutively active in transgenic tobacco, indicating that 5′ regulatory elements could be conserved amongCYP51 promoters in dicot plants. A homologue ofAtCYP51A2 was identified from rape seed, a crop species closely related toArabidopsis. Its constitutive tissue expression pattern implies that the application of thisAtCYP51A2 promoter is possible for that species. Based on these results, we present a new binary vector system with the plant-derivedAtCYP51A2 promoter, which is able to constitutively and ectopically drive a transgene in various dicotyledonous plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • An G (1987) Binary Ti vectors for plant transformation and promoter analysis. Methods Enzymol 153: 292–305

    Article  CAS  Google Scholar 

  • An YQ, McDowell JM, Huang S, McKinney EC, Chambliss S, Meagher RB (1996) Strong, constitutive expression of theArabidopsis ACT2/ACT8 actin subclass in vegetative tissues. Plant J 10: 107–121

    Article  PubMed  CAS  Google Scholar 

  • Carland FM, Fujioka S, Takatsuto S, Yoshida S, Nelson T (2002) The identification of CVP1 reveals a role for sterols in vascular patterning. Plant Cell 14: 2045–2058

    Article  PubMed  CAS  Google Scholar 

  • Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5: 213–218

    Article  PubMed  CAS  Google Scholar 

  • Christensen AH, Sharrock RA, Quail PH (1992) Maize polyubiquitin genes: Structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18: 675–689

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: A simplified method for Agrobacterium-mediated transformation ofArabidopsis thaliana. Plant J 16: 735–743

    Article  PubMed  CAS  Google Scholar 

  • Cornejo MJ, Luth D, Blankenship KM, Anderson OD, Blechl AE (1993) Activity of a maize ubiquitin promoter in transgenic rice. Plant Mol Biol 23: 567–581

    Article  PubMed  CAS  Google Scholar 

  • Diener AC, Li HX, Zhou WX, Whoriskey WJ, Nes WD, Fink GR (2000) STEROL METHYLTRANSFERASE 1 controls the level of cholesterol in plants. Plant Cell 12: 853–870

    Article  PubMed  CAS  Google Scholar 

  • Elmayan T, Vaucheret H (1996) Expression of single copies of a strongly expressed 35S transgene can be silenced post-transcriptionally. Plant J 9: 787–797

    Article  CAS  Google Scholar 

  • Ewen SWB, Pusztai A (1999) Effect of diets containing genetically modified potatoes expressingGalanthus nivalis lectin on rat small intestine. Lancet 354: 1353–1354

    Article  PubMed  CAS  Google Scholar 

  • Guilley H, Dudley RK, Jonard G, Balàzs E, Richards KE (1982) Transcription of cauliflower mosaic virus DNA: Detection of promoter sequences, and characterization of transcripts. Cell 30: 763–773

    Article  PubMed  CAS  Google Scholar 

  • Hartmann MA (1998) Plant sterols and the membrane environment. Trends Plant Sci 3: 170–175

    Article  Google Scholar 

  • Ho MW, Ryan A, Cummins J (1999) Cauliflower mosaic viral promoter — A recipe for disaster? Microbial Ecol Health Disease 11: 194–197

    Article  CAS  Google Scholar 

  • Hodgson J (2000) Scientists avert new GMO crisis. Nature Biotech 18: 13

    Article  CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffman NL, Eichholtz D, Rogers SD, Fraley RT (1985) A simple and general method for transferring genes to plants. Science 227: 1229–1231

    Article  CAS  Google Scholar 

  • Hull R, Covey SN, Dale P (2000) Genetically modified plants and the 35S promoter: Assessing the risks and enhancing the debate. Microbial Ecol Health Disease 12: 1–5

    CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plant: The GUS gene fusion system. Plant Mol Biol Rep 5: 387–405

    Article  CAS  Google Scholar 

  • Kay R, Chan A, Daly M, McPherson J (1987) Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science 236: 1299–1302

    Article  PubMed  CAS  Google Scholar 

  • Kim HB, Schaller H, Goh CH, Kwon M, Choe S, An CS, Durst F, Feldmann KA, Feyereisen R (2005)Arabidopsis cyp51 mutant shows postembryonic seedling lethality associated with lack of membrane integrity. Plant Physiol 138: 2033–2047

    Article  PubMed  CAS  Google Scholar 

  • Kim JA, Yang TJ, Kim JS, Park JY, Kwon SJ, Lim MH, Jin M, Lee SC, Lee SI, Choi BS, Um SH, Kim HI, Chun C, Park BS (2007) Isolation of circadian-associated genes inBrassica rapa by comparative genomics withArabidopsis thaliana. Mol Cells 23: 145–153

    PubMed  CAS  Google Scholar 

  • Lepesheva GI, Hargrove TY, Ott RD, Nes WD, Waterman MR (2006) Biodiversity of CYP51 in trypanosomes. Biochem Soc Trans 34: 1161–1164

    Article  PubMed  CAS  Google Scholar 

  • Lepesheva GI, Waterman MR (2007) Sterol 14alpha-demethylase cytochrome P450 (CYP51), a P450 in all biological kingdoms. Biochim Biophys Acta 1770: 467–477

    PubMed  CAS  Google Scholar 

  • Lysak MA, Koch MA, Pecinka A, Schubert I (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res 15: 516–525

    Article  PubMed  CAS  Google Scholar 

  • Moon J, Parry G, Estelle M (2004) The ubiquitin-proteasome pathway and plant development. Plant Cell 16: 3181–3195

    Article  PubMed  CAS  Google Scholar 

  • Odell JT, Nagy F, Chua NH (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313: 810–812

    Article  PubMed  CAS  Google Scholar 

  • Ouellet F, Vazquez-Tello A, Sarhan F (1998) The wheat wcs120 promoter is cold-inducible in both monocotyledonous and dicotyledonous species. FEBS Lett 423: 324–328

    Article  PubMed  CAS  Google Scholar 

  • Ozawa S, Yasutani I, Fukuda H, Komamine A, Sugiyama M (1998) Organogenic responses in tissue culture ofsrd mutants ofArabidopsis thaliana. Development 125: 135–142

    PubMed  CAS  Google Scholar 

  • Paparini A, Romano-Spica V (2006) Gene transfer and cauliflower mosaic virus promoter 35S activity in mammalian cells. J Environ Sci Health 41: 437–449

    CAS  Google Scholar 

  • Potenza C, Aleman L, Sengupta-Gopalan C (2004) Targeting transgene expression in research, agricultural, and environmental applications: Promoters used in plant transformation. In Vitro Cell Dev Biol Plant 40: 1–22

    CAS  Google Scholar 

  • Schenk PM, Remans T, Sági L, Elliott AR, Dietzgen RG, Swennen R, Ebert PR, Grof CP, Manners JM (2001) Promoters for pregenomic RNA of banana streak badnavirus are active for transgene expression in monocot and dicot plants. Plant Mol Biol 47: 399–412

    Article  PubMed  CAS  Google Scholar 

  • Shirasawa-Seo N, Sano Y, Nakamura S, Murakami T, Gotoh Y, Naito Y, Hsia CN, Seo S, Mitsuhara I, Kosugi S, Ohashi Y (2005) The promoter of Milk vetch dwarf virus component 8 confers effective gene expression in both dicot and monocot plants. Plant Cell Rep 24: 155–163

    Article  PubMed  CAS  Google Scholar 

  • Sivamani E, Qu R (2006) Expression enhancement of a rice poly-ubiquitin gene promoter. Plant Mol Biol 60: 225–239

    Article  PubMed  CAS  Google Scholar 

  • Stomp AM (1992) Histochemical localization of β-glucuronidase,In SR Gallagher, ed, GUS Protocols: Using the GUS Gene as a Reporter of Gene Expression. Academic Press, San Diego, pp 103–113

    Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, Ho THD, Wu R (1996) Expression of a late embryogenesis abundant protein gene,HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110: 249–257

    PubMed  CAS  Google Scholar 

  • Yoo SY, Bomblies K, Yoo SK, Yang, JW, Choi MS, Lee JS, Weigel D, Ahn JH (2005) The 35S promoter used in a selectable marker gene of a plant transformation vector affects the expression of the transgene. Planta 221: 523–530

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, McElroy D, Wu R (1991) Analysis of rice Act1 5’ region activity in transgenic rice plants. Plant Cell 3: 1155–1165

    Article  PubMed  CAS  Google Scholar 

  • Zheng X, Deng W, Luo K, Duan H, Chen Y, McAvoy R, Song S, Pei Y, Li Y (2007) The cauliflower mosaic virus (CaMV) 35S promoter sequence alters the level and patterns of activity of adjacent tissue- and organ-specific gene promoters. Plant Cell Rep 26: 1195–1203

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho Bang Kim.

Additional information

These two authors are equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, H., Oh, H.J., Ahn, H.M. et al. A sterol biosynthetic geneAtCYP51A2 promoter for constitutive and ectopic expression of a transgene in plants. J. Plant Biol. 51, 359–365 (2008). https://doi.org/10.1007/BF03036139

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03036139

Keywords

Navigation