Skip to main content
Log in

Characterization and comparative expression analysis of CUL1 genes in rice

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Cullin-RING E3 ubiquitin ligase (CRL) complex is known as the largest family of E3 ligases. The most widely characterized CRL, SCF complex (CRL1), utilizes CUL1 as a scaffold protein to assemble the complex components. To better understand CRL1-mediated cellular processes in rice, three CUL1 genes (OsCUL1s) were isolated in Oryza sativa. Although all OsCUL1 proteins exhibited high levels of amino acid similarities with each other, OsCUL1-3 had a somewhat distinct structure from OsCUL1-1 and OsCUL1-2. Basal expression levels of OsCUL1-3 were much lower than those of OsCUL1-1 and OsCUL1-2 in all selected samples, showing that OsCUL1-1 and OsCUL1-2 play predominant roles relative to OsCUL1-3 in rice. OsCUL1-1 and OsCUL1-2 genes were commonly upregulated in dry seeds and by ABA and salt/drought stresses, implying their involvement in ABA-mediated processes. These genes also showed similar expression patterns in response to various hormones and abiotic stresses, alluding to their functional redundancy. Expression of the OsCUL1-3 gene was also induced in dry seeds and by ABA-related salt and drought stresses, implying their participation in ABA responses. However, its expression pattern in response to hormones and abiotic stresses was somehow different from those of the OsCUL1-1 and OsCUL1-2 genes. Taken together, these findings suggest that the biological role and function of OsCUL1-3 may be distinct from those of OsCUL1-1 and OsCUL1-2. The results of expression analysis of OsCUL1 genes in this study will serve as a useful platform to better understand overlapping and distinct roles of OsCUL1 proteins and CRL1-mediated cellular processes in rice plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bandurska H, Niedziela J, Chadzinikolau T (2013) Separate and combined responses to water deficit and UV-B radiation. Plant Sci 213:98–105

    Article  CAS  PubMed  Google Scholar 

  • Brummell DA, Harpster MH, Dunsmuir P (1999) Differential expression of expansin gene family members during growth and ripening of tomato fruit. Plant Mol Biol 39:161–169

    Article  CAS  PubMed  Google Scholar 

  • Bulatov E, Ciulli A (2015) Targeting Cullin-ring E3 ubiquitin ligases for drug discovery: structure, assembly and small-molecule modulation. Biochem J 467:365–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callis J (2014) The ubiquitination machinery of the ubiquitin system. Arabidopsis Book 12:e0174

    Article  PubMed  PubMed Central  Google Scholar 

  • Cascardo JC, Buzeli RA, Almeida RS, Otoni WC, Fontes EP (2001) Differential expression of the soybean BiP gene family. Plant Sci 160:273–281

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Hajirezaei M, Börnke F (2005) Differential expression of sucrose-phosphate synthase isoenzymes in tobacco reflects their functional specialization during dark-governed starch mobilization in source leaves. Plant Physiol 139:1163–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Xu Y, Luo W, Li W, Chen N, Zhang D, Chong K (2013) The F-box protein OsFBK12 targets OsSAMS1 for degradation and affects pleiotropic phenotypes, including leaf senescence, in rice. Plant Physiol 163:1673–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen A, Chen X, Wang H, Liao D, Gu M, Qu H, Sun S, Xu G (2014) Genome-wide investigation and expression analysis suggest diverse roles and genetic redundancy of Pht1 family genes in response to Pi deficiency in tomato. BMC Plant Biol 14:61

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng S, Shen Y, Sullivan JA, Rubio V, Xiong Y, Sun TP, Deng XW (2004) Arabidopsis CAND1, an unmodified CUL1-interacting protein, is involved in multiple developmental pathways controlled by ubiquitin/proteasome-mediated protein degradation. Plant Cell 16:1870–1882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilkerson J, Hu J, Brown J, Jones A, Sun TP, Callis J (2009) Isolation and characterization of cul1-7, a recessive allele of CULLIN1 that disrupts SCF function at the C terminus of CUL1 in Arabidopsis thaliana. Genetics 181:945–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gingerich DJ, Hanada K, Shiu SH, Vierstra RD (2007) Large-scale, lineage-specific expansion of a bric-a-brac/tramtrack/broad complex ubiquitin-ligase gene family in rice. Plant Cell 19:2329–2348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldenberg SJ, Cascio TC, Shumway SD, Garbutt KC, Liu J, Xiong Y, Zheng N (2004) Structure of the Cand1-Cul1-Roc1 complex reveals regulatory mechanisms for the assembly of the multisubunit cullin-dependent ubiquitin ligases. Cell 119:517–528

    Article  CAS  PubMed  Google Scholar 

  • Gray WM, del Pozo JC, Walker L, Hobbie L, Risseeuw E, Banks T, Crosby WL, Yang M, Ma H, Estelle M (1999) Identification of an SCF ubiquitin–ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev 13:1678–1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han SH, Yoo SC, Lee BD, An G, Paek NC (2015) Rice FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (OsFKF1) promotes flowering independent of photoperiod. Plant Cell Environ 38:2527–2540

    Article  CAS  PubMed  Google Scholar 

  • He Y, Wang C, Higgins J, Yu J, Zong J, Lu P, Zhang D, Liang W (2016) MEIOTIC F-BOX is essential for male meiotic DNA double strand break repair in rice. Plant Cell 28:1879–1893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellmann H, Hobbie L, Chapman A, Dharmasiri S, Dharmasiri N, del Pozo C, Reinhardt D, Estelle M (2003) Arabidopsis AXR6 encodes CUL1 implicating SCF E3 ligases in auxin regulation of embryogenesis. EMBO J 22:3314–3325

  • Hobbie L, McGovern M, Hurwitz LR, Pierro A, Liu NY, Bandyopadhyay A, Estelle M (2000) The axr6 mutants of Arabidopsis thaliana define a gene involved in auxin response and early development. Development 127:23–32

  • Hotton SK, Callis J (2008) Regulation of cullin RING ligases. Annu Rev Plant Biol 59:467–489

    Article  CAS  PubMed  Google Scholar 

  • Hua Z, Vierstra RD (2011) The cullin-RING ubiquitin-protein ligases. Annu Rev Plant Biol 62:299–334

    Article  CAS  PubMed  Google Scholar 

  • Huang TT, D’Andrea AD (2006) Regulation of DNA repair by ubiquitylation. Nat Rev Mol Cell Biol 7:323–334

    Article  CAS  PubMed  Google Scholar 

  • Kahloul S, HajSalah El, Beji I, Boulaflous A, Ferchichi A, Kong H, Mouzeyar S, Bouzidi MF (2013) Structural, expression and interaction analysis of rice SKP1-like genes. DNA Res 20:67–78

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Kieber JJ, Schaller GE (2013) The rice F-box protein KISS ME DEADLY2 functions as a negative regulator of cytokinin signalling. Plant Signal Behav 8:e26434

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Kim WT (2011) Regulation of abiotic stress signal transduction by E3 ubiquitin ligases in Arabidopsis. Mol Cells 31:201–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Ning Y, Zhang Y, Yu N, Zhao C, Zhan X, Wu W, Chen D, Wei X, Wang GL, Cheng S, Cao L (2017) OsCUL3a negatively regulates cell death and immunity by degrading OsNPR1 in rice. Plant Cell 29:345–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metzger MB, Pruneda JN, Klevit RE, Weissman AM (2014) RING-type E3 ligases: master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination. Biochim Biophys Acta 1843:47–60

    Article  CAS  PubMed  Google Scholar 

  • Moon J, Zhao Y, Dai X, Zhang W, Gray WM, Huq E, Estelle M (2007) A new CULLIN 1 mutant has altered responses to hormones and light in Arabidopsis. Plant Physiol 143:684–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukhopadhyay D, Riezman H (2007) Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315:201–205

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (2014) The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front Plant Sci 5:170

    Article  PubMed  PubMed Central  Google Scholar 

  • Okamura M, Aoki N, Hirose T, Yonekura M, Ohto C, Ohsugi R (2011) Tissue specificity and diurnal change in gene expression of the sucrose phosphate synthase gene family in rice. Plant Sci 181:159–166

    Article  CAS  PubMed  Google Scholar 

  • Olzman JA, Chin LS (2008) Parkin-mediated K63-linked polyubiquitination: a signal for targeting misfolded proteins to the aggresome autophagy pathway. Autophagy 4:85–87

    Article  Google Scholar 

  • Oñate-Sánchez L, Vicente-Carbajosa J (2008) DNA-free RNA isolation protocols for Arabidopsis thaliana, including seeds and siliques. BMC Res Notes 1:93

    Article  PubMed  PubMed Central  Google Scholar 

  • Petroski MD, Deshaies RJ (2005) Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol 6:9–20

    Article  CAS  PubMed  Google Scholar 

  • Piisilä M, Keceli MA, Brader G, Jakobson L, Jõesaar I, Sipari N, Kollist H, Palva ET, Kariola T (2015) The F-box protein MAX2 contributes to resistance to bacterial phytopathogens in Arabidopsis thaliana. BMC Plant Biol 15:53

    Article  PubMed  PubMed Central  Google Scholar 

  • Piper RC, Lehner P (2011) Endosomal transportation via ubiquitination. Trends Cell Biol 21:647–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajabbeigi E, Eichholz I, Beesk N, Ulrichs C, Kroh LW, Rohn S, Huyskens-Keil S (2013) Interaction of drought stress and UV-B radiation—impact on biomass production and flavonoid metabolism in lettuce (Lactuca sativa L.). J Appl Bot Food Qual 86:190–197

    CAS  Google Scholar 

  • Razem FA, Baron K, Hill RD (2006) Turning on gibberellin and abscisic acid signaling. Curr Opin Plant Biol 9:454–459

    Article  CAS  PubMed  Google Scholar 

  • Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16:276–277

    Article  CAS  PubMed  Google Scholar 

  • Risseeuw EP, Daskalchuk TE, Banks TW, Liu E, Cotelesage J, Hellmann H, Estelle M, Somers DE, Crosby WL (2003) Protein interaction analysis of SCF ubiquitin E3 ligase subunits from Arabidopsis. Plant J 34:753–767

    Article  CAS  PubMed  Google Scholar 

  • Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006a) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18:1292–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K (2006b) Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci USA 103:18822–18827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santner A, Estelle M (2010) The ubiquitin-proteasome system regulates plant hormone signaling. Plant J 61:1029–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato Y, Takehisa H, Kamatsuki K, Minami H, Namiki N, Ikawa H, Ohyanagi H, Sugimoto K, Antonio BA, Nagamura Y (2013) RiceXPro version 3.0: expanding the informatics resource for rice transcriptome. Nucleic Acids Res 41:D1206-1213

    Google Scholar 

  • Shen WH, Parmentier Y, Hellmann H, Lechner E, Dong A, Masson J, Granier F, Lepiniec L, Estelle M, Genschik P (2002) Null mutation of AtCUL1 causes arrest in early embryogenesis in Arabidopsis. Mol Biol Cell 13:1916–1928

  • Smalle J, Vierstra RD (2004) The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol 55:555–590

    Article  CAS  PubMed  Google Scholar 

  • Song S, Dai X, Zhang WH (2012) A rice F-box gene, OsFbx352, is involved in glucose-delayed seed germination in rice. J Exp Bot 63:5559–5568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomann A, Dieterle M, Genschik P (2005) Plant CULLIN-based E3s: phytohormones come first. FEBS Lett 579:3239–3245

    Article  CAS  PubMed  Google Scholar 

  • Vierstra RD (2012) The expanding universe of ubiquitin and ubiquitin-like modifiers. Plant Physiol 160:2–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu JT, Lin HC, Hu YC, Chien CT (2005) Neddylation and deneddylation regulate Cul1 and Cul3 protein accumulation. Nat Cell Biol 7:1014–1020

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Ma H, Nei M, Kong H (2009) Evolution of F-box genes in plants: different modes of sequence divergence and their relationships with functional diversification. Proc Natl Acad Sci USA 106:835–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu C, Li M, Wu J, Guo H, Li Q, Zhang Y, Chai J, Li T, Xue Y (2013) Identification of a canonical SCFSLF complex involved in S-RNase-based self-incompatibility of Pyrus (Rosaceae). Plant Mol Biol 81:245–257

    Article  CAS  PubMed  Google Scholar 

  • Yan YS, Chen XY, Yang K, Sun ZX, Fu YP, Zhang YM, Fang RX (2011) Overexpression of an F-box protein gene reduces abiotic stress tolerance and promotes root growth in rice. Mol Plant 4:190–197

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Wu J, Xu N, Peng M (2007) Roles of F-box proteins in plant hormone responses. Acta Biochim Biophys Sin 39:915–922

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Feng S, Chen F, Chen H, Wang J, McCall C, Xiong Y, Deng XW (2008) Arabidopsis DDB1-CUL4 ASSOCIATED FACTOR1 forms a nuclear E3 ubiquitin ligase with DDB1 and CUL4 that is involved in multiple plant developmental processes. Plant Cell 20:1437–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng J, Yang X, Harrell JM, Ryzhikov S, Shim EH, Lykke-Andersen K, Wei N, Sun H, Kobayashi R, Zhang H (2002) CAND1 binds to unneddylated CUL1 and regulates the formation of SCF ubiquitin E3 ligase complex. Mol Cell 10:1519–1526

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B03930213), by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through Agri-Bio industry Technology Development Program funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (115081-2), and by the Strategic Initiative for Microbiomes in Agriculture and Food, Ministry of Agriculture, Food and Rural Affairs, Republic of Korea (916007021HD040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Hoon Lee.

Ethics declarations

Conflict of interest

Sang-Hoon Kim declares that he does not have conflict of interest. Og-Geum Woo declares that she does not have conflict of interest. Hyunsoo Jang declares that he does not have conflict of interest. Jae-Hoon Lee declares that he does not have conflict of interest.

Ethical approval

This article does not contain any studies with human subjects or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SH., Woo, OG., Jang, H. et al. Characterization and comparative expression analysis of CUL1 genes in rice. Genes Genom 40, 233–241 (2018). https://doi.org/10.1007/s13258-017-0622-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-017-0622-8

Keywords

Navigation