Skip to main content
Log in

The ethylene-responsive factor like protein 1 (CaERFLP1) of hot pepper (Capsicum annuum L.) interacts in vitro with both GCC and DRE/CRT sequences with different binding affinities: Possible biological roles of CaERFLP1 in response to pathogen infection and high salinity conditions in transgenic tobacco plants

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

From a pathogen-inoculated hot pepper (Capsicum annuumL. cv. Pukang) leaf EST, we identified a cDNA clone, pCaERFLP1, encoding a putative transcription factor that contains a single ERF/AP2 DNA binding domain. CaERFLP1 was most closely related to tomato LeERF2 (73%), both of which belong to the novel ERF class IV typified by the N-terminal MCGGAIL signature sequence, while it had a limited sequence identity (25–30%) with Arabidopsis AtERFs and tobacco NtERFs. Quantitative gel retardation assays revealed that bacterially expressed full-length CaERFLP1 was able to form a specific complex with both the GCC box and DRE/CRT motif, with its binding affinity for GCC being stronger than for DRE/CRT. When fused to the GAL4 DNA binding domain, the N-terminal CaERFLP11–37 and C-terminal CaERFLP1198–264 mutant polypeptides could function individually as transactivators in yeast. This suggests that two separate domains of CaERFLP1 may play distinct roles in transcription activation. In particle co-bombardment experiments, CaERFLP1 activated the transcription of reporter genes containing the 4X[GCC] element in tobacco cells. In hot pepper plants, the steady-state level of CaERFLP1mRNA was markedly induced by multiple environmental factors, such as pathogen infection, ethylene, mechanical wounding and high salinity. Furthermore, ectopic expression of CaERFLP1 in transgenic tobacco plants resulted in partially improved tolerance against the bacterial pathogen Pseudomonas syringae and salt stress (100 mM NaCl). Consistently, various defense-related genes, including GCC box-containing PR genes and the DRE/CRT-containing LTI45 (ERD10) gene, were constitutively expressed in 35S::CaERFLP1 tobacco plants. Thus, it appears that CaERFLP1 is functional in tobacco cells, where it induces the transactivation of some GCC- and DRE/CRT-genes to trigger a subset of stress response. Here, the possible biological role(s) of CaERFLP1 is discussed, especially with regard to the possibility that CaERFLP1 has multiple functions in the regulation of GCC- and DRE/CRT-mediated gene expression in hot pepper plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

(References)

  • Shinozaki, K. 2003. OsDREB genes in rice, Oriza sativa L., encode transcription activators that function in drought-, high-salt-and cold-responsive gene expression. Plant J. 33: 751–763.

    Google Scholar 

  • Durrant, W.E., Rowland, O., Piedras, P., Hammond-Kosack, K.E. and Jones, J.D.G. 2000. cDNA-AFLP reveals a striking overlap in race-specific resistance and wound response gene expression profiles. Plant Cell 12: 963–977.

    Google Scholar 

  • Elliott, R.C., Betzner, A.S., Huttner, E., Oakes, M.P., Tucker, W.Q., Gerentes, D., Perez, P. and Smyth, D.R. 1996. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8: 155–168.

    Google Scholar 

  • Fujimoto, S.Y., Ohta, M., Usui, A., Shinshi, H. and Ohme-Takagi, M. 2000. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12: 393–404.

    Google Scholar 

  • Gu,Y.Q., Wildermuth,M.C., Chakravarthy, S., Loh,Y.T., Yang, C., He, X., Han, Y. and Martin, G.B. 2002. Tomato transcription factors Pti4, Pti5, and Pti6 activate defense responses when expressed in Arabidopsis. Plant Cell 14: 817–831.

    Google Scholar 

  • Hao, D., Yamasaki, K., Sarai, A. and Ohme-Takagi, M. 2002. Determinants in the sequence specific binding of two plant transcription factors, CBF1 and NtERF2, to the DRE and GCC motifs. Biochemistry 41: 4202–4208.

    Google Scholar 

  • Hoekema, A., Hirsch, P., Hooykaas, P.J. and Schilperoort, R. 1983. A binary plant vector strategy based on separation of virand T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303: 179–180.

    Google Scholar 

  • Holleberg, S.M. and Evans, R.M. 1988. Multiple and cooperative trans-activation domains of the human glucocorticoid receptor. Cell 55: 899–906.

    Google Scholar 

  • Horsch, R.B., Fry, J.E., Hoffmann, N.L., Eichholtz, D., Rogers, S.G. and Fraley, R.T. 1985. A simple and general method for transferring genes into plants. Science 227: 1229–1231.

    Google Scholar 

  • Ingram, J. and Bartels, D. 1996. The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 377–403.

    Google Scholar 

  • Jaglo-Ottesen, K.R., Gilmour, S.J., Zarka, D.G., Schabenberger, O. and Thomashow, M.F. 1998. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280: 104–106.

    Google Scholar 

  • Jofuku, K.D., den Boer, B.G., Van Montagu, M. and Okamuro, J.K. 1994. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6: 1211–1225.

    Google Scholar 

  • Kang, J.Y., Choi, H.I., Im, M.Y. and Kim, S.Y. 2002. Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14: 343–357.

    Google Scholar 

  • Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. 1999. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnol. 17: 287–291.

    Google Scholar 

  • Kim, H.J., Kim, Y.K., Park, J.Y. and Kim, J. 2002. Light signaling mediated by phytochrome plays an important role in cold-induced gene expression through the C-repeat/dehydration responsive element (C/DRE) in Arabidopsis thaliana. Plant J. 29: 693–704.

    Google Scholar 

  • Kim, Y.C., Yi, S.Y., Mang, H.G., Seo, Y.S., Kim, W.T. and Choi, D. 2002. Pathogen-induced expression of cyclooxygenase homologue in hot pepper (Capsicum annuum cv. Pukang). J. Exp. Bot. 53: 383–385.

    Google Scholar 

  • Kizis, D., Lumbreras, V. and Pages, M. 2001. Role of AP2/ EREBP transcription factors in gene regulation during abiotic stress. FEBS Lett. 498: 187–189.

    Google Scholar 

  • Lee, J.H. and Kim, W.T. 2003. Molecular and biochemical characterization of VR-EILs encoding mung bean ETHYLENE INSENSITIVE3-LIKE proteins. Plant Physiol. 132: 1475–1488.

    Google Scholar 

  • Lehman, A., Black, R. and Ecker, J.R. 1996. HOOKLESS1, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyls. Cell 85: 183–194.

    Google Scholar 

  • Liu, Q., Kasuga, M., Sakura, Y., Abe, H., Miura, S., Yamaguchi-shinozaki, K. and Shinozaki, K. 1998. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and lowtemperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10: 1391–1406.

    Google Scholar 

  • Lund, S.T., Stall, R.E. and Klee, H.J. 1998. Ethylene regulates the susceptible response to pathogen infection in tomato. Plant Cell 10: 371–382.

    Google Scholar 

  • Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 15: 473–497.

    Google Scholar 

  • Nylander, M., Heino, P., Helenius, E., Palva, E.T., Ronne, H. and Welin, B.V. 2001. The low-temperature-and salt-induced RCI2A gene of Arabidopsis complements the sodium sensitivity caused by a deletion of the homologous yeast gene SNA1. Plant Mol. Biol. 45: 341–352.

    Google Scholar 

  • O'Donnell, P.J., Calvert, C., Atzorn, R., Wasternack, C., Leyser, H.M.O. and Bowles, D.J. 1996. Ethylene as a signal mediating the wound response of tomato plants. Science 274: 1914–1917.

    Google Scholar 

  • Ohme-Takagi, M. and Shinshi, H. 1990. Structure and expression of a tobacco b-1,3-glucanase gene. Plant Mol. Biol. 15, 941–946.

    Google Scholar 

  • Ohme-Takagi, M. and Shinshi, H. 1995. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7: 173–182.

    Google Scholar 

  • Ohta, M., Matsui, K., Hiratsu, K., Shinshi, H. and Ohme-Takagi, M. 2001. Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell 13: 1959–1968.

    Google Scholar 

  • Ohta, M., Ohme-Takagi, M. and Shinshi, H. 2000. Three ethylene-responsive transcriptional factors in tobacco with distinct transactivation functions. Plant J. 22: 29–38.

    Google Scholar 

  • Oono, Y., Seki, M., Nanjo, T., Narusaka, M., Fujita, M., Satoh, R., Satou, M., Sakurai, T., Ishida, J., Akiyama, K., Iida, K., Maruyama, K., Satoh, S., Yamaguchi-Shinozaki, K. and Shinozaki K. 2003. Monitoring expression profiles of Arabidopsis gene expression during rehydration process after dehydration using ca. 7000 full-length cDNA microarray. Plant J. 34: 868–887.

    Google Scholar 

  • Ozturk, N.Z., Talame, V., Deyholos, M., Michalowski, C.B., Galbraith, D.W., Gozukirmizi, N., Tuberosa, R. and Bohnert, H.J. 2002. Monitoring large-scale changes in transcript abundance in drought-and salt-stressed barley. Plant Mol. Biol. 48: 551–573.

    Google Scholar 

  • Park, J.A., Cho, S.K., Kim, J.E., Chung, H.S., Hong, J.P., Hwang, B., Hong, C.B. and Kim, W.T. 2003. Isolation of cDNAs differentially expressed in response to drought stress and characterization of the Ca-LEAL1 gene encoding a new family of atypical LEA-like protein homologue in hot pepper (Capsicum annuum L. cv. Pukang). Plant Sci. 165: 471–481.

    Google Scholar 

  • Park, J.M., Park, C.J., Lee, S.B., Ham, B.K., Shin, R. and Paek, K.H. 2001. Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 13: 1035–1046.

    Google Scholar 

  • Penninckx, I.A.M.A., Eggermont, K., Terras, F.R.G., Thomma, B.P.H.J., De Samblank, G.W., Buchala, A., Metraux, J.P., Manners, J.M. and Broekaert, W.F. 1996. Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8: 2309–2323.

    Google Scholar 

  • Penninckx, I.A.M.A., Thomma, B.P.H.J., Buchala, A., Metraux, J.P., Broekaert, W.F. 1998. Concomitant activation of jasmonate and ethylene response pathway is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10: 2103–2113.

    Google Scholar 

  • Riechmann, J.L., Martin, J.H., Jiang, R.C., Keddie, J., Adam, L., Pineda, O., Ratcliffe, J., Samaha, R., Creelman, R., Pilgrim, M., Broun, P., Zhang, J.Z., Ghandehari, D., Sherman, B.K. and Yu, G.L. 2000. Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes. Science 290: 2105–2110.

    Google Scholar 

  • Riggs, A.D., Suzuki, H. and Bourgeoss, S. 1970. Lac repressor-operator interaction. I. Equilibrium studies. J. Mol. Biol. 48: 67–83.

    Google Scholar 

  • Sakuma, Y., Liu, Q., Dubouzet J.G., Abe, H., Shinozaki, K. and Yamaguchi-shinozaki, K. 2002. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression. Biochem. Biophys. Res. Commun. 290: 998- 1009.

    Google Scholar 

  • Sato, F., Kitajima, S., Koyama, T. and Yamada, Y. 1996. Ethylene-induced gene expression of osmotin-like protein, a natural isoform of tobacco PR-5, is mediated by the AGCCGCC cis-sequence. Plant Cell Physiol. 37: 249–255.

    Google Scholar 

  • Seki, M., Narusaka, M., Abe, H., Kasuga, M., Yamaguchi-Shinozaki, K., Carninci, P., Hayashizaki, Y. and Shinozaki, K. 2001. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses using full-length cDNA microarray. Plant Cell 13: 61–72.

    Google Scholar 

  • Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A., Nakajima, M., Enju, A., Sakurai, T., Satou, M., Akiyama, K., Taji, T., Yamaguchi-Shinozaki, K.,Carninci, P., Kawai, J., Hayashizaki, Y. and Shinozaki, K. 2002. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J. 31: 279–292.

    Google Scholar 

  • Sessa, G., Meller, Y. and Fluhr, R. 1995. A GCC element and a G-box motif participate in ethylene-induced expression of the PRB-1b gene. Plant Mol. Biol. 28: 145–153.

    Google Scholar 

  • Shin, R., Lee, G.J., Park, C.J., Kim, T.Y., You, J.S., Nam, Y.W. and Paek, K.H. 2001. Isolation of pepper mRNAs differentially expressed during the hypersensitive response to tobacco mosaic virus and characterization of a proteinase inhibitor gene. Plant Sci. 161: 727–737.

    Google Scholar 

  • Shinozaki, K. and Yamaguchi-Shinozaki, K. 1994. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6: 251–264.

    Google Scholar 

  • Shinozaki, K. and Yamaguchi-Shinozaki, K. 1996. Molecular responses to drought and cold stress. Curr. Opin. Biotechnol. 7: 161–167.

    Google Scholar 

  • Shinozaki, K. and Yamaguchi-Shinozaki, K. 2000. Molecular responses to dehydration and low temperature: Difference and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol. 3: 217–223.

    Google Scholar 

  • Shinshi, H., Usami, S. and Ohme-tagaki, M. 1995. Identification of an ethylene-responsive region in the promoter of a tobacco class I chitinase gene. Plant Mol. Biol. 27: 923- 932.

    Google Scholar 

  • Singh, K.B., Foley, R.C. and Sanchez, L.O. 2002. Transcription factors in plant defense and stress responses. Curr. Opin. Plant Biol. 5: 430–436.

    Google Scholar 

  • Stockinger, E.J., Gilmour, S.J. and Thomashow, M.F. 1997. Arabidopsis thalianaCBF1encodes an AP2domain-containing transcriptional activator that binds to the C-repeat/DRE, a cisacting DNA regulatory element that stimulated transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. USA 94: 1035–1040.

    Google Scholar 

  • Thilmony, R.L., Chen, Z., Bressan, R.A. and Martin, G.B. 1995. Expression of the tomato Pto gene in tobacco enhances resistance to Pseudomonas syringae pv. tabaci expressing avrPto. Plant Cell 7: 1529–1536.

    Google Scholar 

  • Tournier, B., Sanchez-Ballesta, M.T., Jones, B., Pesquet, E., Regad, F., Latche, A., Pech, J.C. and Bouzayen, M. 2003. New members of the tomato ERF family show specific expression pattern and diverse DNA-binding capacity to the GCC box element. FEBS Lett. 550: 149–154.

    Google Scholar 

  • Ueda, T., Seo, S., Ohashi, Y. and Hashimoto, J. 2000. Circadian and senescence-enhanced expression of a tobacco cysteine protease gene. Plant Mol. Biol. 44: 649–657.

    Google Scholar 

  • Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2000. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc. Natl. Acad. Sci. USA 97: 11632–11637.

    Google Scholar 

  • Welin, B.V., Olson, A., Nylander, M. and Palva, E.T. 1994. Characterization and differential expression of dhn/lea/rab-like gene during cold acclimation and drought stress in Arabidopsis thaliana. Plant Mol. Biol. 26: 131–144.

    Google Scholar 

  • Xiong, L., Schumaker, K.S. and Zhu, J.K. 2002. Cell signaling during cold, drought, and salt stress. Plant Cell S165–S183.

  • Yang, H.J., Shen, H., Chen, Li., Xing, Y.Y., Wang, Z.Y., Zhang, J.L. and Hong, M.M. 2002. The OSEBP-89 gene of rice encodes a putative EREBP transcription factor and is temporally expressed in developing endosperm and intercalary meristem. Plant Mol. Biol. 50: 379–391.

    Google Scholar 

  • Zhu, J.K. 2002. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53: 247–273.

    Google Scholar 

  • Zhou, J., Tang, X. and Martin, G.B. 1997. The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesisrelated genes. EMBO J. 16: 3207–3218

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JH., Hong, JP., Oh, SK. et al. The ethylene-responsive factor like protein 1 (CaERFLP1) of hot pepper (Capsicum annuum L.) interacts in vitro with both GCC and DRE/CRT sequences with different binding affinities: Possible biological roles of CaERFLP1 in response to pathogen infection and high salinity conditions in transgenic tobacco plants. Plant Mol Biol 55, 61–81 (2004). https://doi.org/10.1007/s11103-004-0417-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-004-0417-6

Navigation