Skip to main content
Log in

Relation between microstructure and loading applied by a granular flow to a rigid wall using DEM modeling

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

This paper presents a numerical model based on Discrete Element Method used to reproduce a series of tests of dry granular flow impacting a rigid wall. The flow was composed of poly-dispersed non-spherical particles flowing in an inclined chute with different inclination angles. The model has been calibrated based on the flow thickness measurements and the shape of the flowing particles (a single sphere and a clump). Quantitative comparison with experimental data showed good agreement in terms of peak impact force on the wall, the time of the peak and also the residual force values at the end of the tests. After validating the model, relation between microstructure and the normal impact force against the wall was investigated, by comparing the variation of impact force values along the height of the wall for different tests. Microstructural heterogeneities were observed in the impacting and depositing stages of the flow, indicating the presence of arching effect in the granular medium behind the wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Jakob, M., Oldrich, H.: Debris-flow hazards and related phenomena. Springer, Newyork (2005)

    Google Scholar 

  2. Kishi, N., Ikeda, K., Konno, H., Kawase, R.: In: Proceedings of Structures under Shock and Impact IV, pp. 351–360 (2000)

  3. Nicot, F., Cambou, B., Mazzoleni, G.: From a constitutive modelling of metallic rings to the design of rockfall restraining nets. Int. J. Numer. Anal. Methods Geomech. 25(1), 49–70 (2001)

    Article  MATH  Google Scholar 

  4. Volkwein, A.: Proceedings of Computing in Civil Engineering. ASCE, Cancun (2005)

    Google Scholar 

  5. Hearn, G., Barrett, R.K., Henson, H.H.: Development of effective rockfall barriers. J. Transp. Eng. 121(6), 507–516 (1995)

    Article  Google Scholar 

  6. Peila, D., Pelizza, S., Sassudelli, F.: Evaluation of behaviour of rockfall restraining nets by full scale tests. Rock Mech. Rock Eng. 31(1), 1–24 (1998)

    Article  Google Scholar 

  7. Hutter, K., Koch, T., Pluüss, C., Savage, S.: The dynamics of avalanches of granular materials from initiation to runout. Part II experiments. Acta Mech. 109(1–4), 127–165 (1995)

    Article  MathSciNet  Google Scholar 

  8. Azanza, E., Chevoir, F., Moucheront, P.: Experimental study of collisional granular flows down an inclined plane. J. Fluid Mech. 400, 199–227 (1999)

    Article  ADS  MATH  Google Scholar 

  9. Pudasaini, S.P., Hutter, K.: Rapid shear flows of dry granular masses down curved and twisted channels. J. Fluid Mech. 495, 193–208 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Moriguchi, S., Borja, R.I., Yashima, A., Sawada, K.: Estimating the impact force generated by granular flow on a rigid obstruction. Acta Geotech. 4(1), 57–71 (2009)

    Article  Google Scholar 

  11. Buchholtz, V., Pöschel, T.: Interaction of a granular stream with an obstacle. Granul. Matter 1(1), 33–41 (1998)

    Article  MATH  Google Scholar 

  12. Teufelsbauer, H., Wang, Y., Chiou, M.C., Wu, W.: Flow-obstacle interaction in rapid granular avalanches: DEM simulation and comparison with experiment. Granul. Matter 11(4), 209–220 (2009)

    Article  MATH  Google Scholar 

  13. Silbert, L.E., Ertaş, D., Grest, G.S., Halsey, T.C., Levine, D., Plimpton, S.J.: Granular flow down an inclined plane: bagnold scaling and rheology. Phys. Rev. E 64(5), 051302 (2001)

    Article  ADS  Google Scholar 

  14. Calvetti, F., Crosta, G., Tatarella, M.: Numerical simulation of dry granular flows: from the reproduction of small-scale experiments to the prediction of rock avalanches. Rivista Italiana di Geotecnica 34(2), 21–38 (2000)

    Google Scholar 

  15. Faug, T., Beguin, R., Chanut, B.: Mean steady granular force on a wall overflowed by free-surface gravity-driven dense flows. Phys. Rev. E 80(2), 021305 (2009)

    Article  ADS  Google Scholar 

  16. Mollon, G., Richefeu, V., Villard, P., Daudon, D.: Numerical simulation of rock avalanches: influence of a local dissipative contact model on the collective behavior of granular flows. J. Geophys. Res. Earth Surf. (2003–2012) 117(F2), F02036 (2012)

    ADS  Google Scholar 

  17. Campbell, C.S., Cleary, P.W., Hopkins, M.: Large-scale landslide simulations: global deformation, velocities and basal friction. J. Geophys. Res. B Solid Earth (1978–2012) 100(B5), 8267–8283 (1995)

    Article  ADS  Google Scholar 

  18. Lemieux, P.A., Durian, D.: From avalanches to fluid flow: a continuous picture of grain dynamics down a heap. Phys. Rev. Lett. 85(20), 4273 (2000)

    Article  ADS  Google Scholar 

  19. Chu, T., Hill, G., McClung, D., Ngun, R., Sherkat, R.: Experiments on granular flows to predict avalanche runup. Can. Geotech. J. 32(2), 285–295 (1995)

    Article  Google Scholar 

  20. Keller, S., Ito, Y., Nishimura, K.: Measurements of the velocity distribution in ping-pong-ball avalanches. Ann. Glaciol. 26, 259–264 (1998)

    ADS  Google Scholar 

  21. Faug, T., Lachamp, P., Naaim, M.: Experimental investigation on steady granular flows interacting with an obstacle down an inclined channel: study of the dead zone upstream from the obstacle. Application to interaction between dense snow avalanches and defence structures. Nat. Hazards Earth Syst. Sci. 2(3/4), 187–191 (2002)

  22. Valentino, R., Barla, G., Montrasio, L.: Experimental analysis and micromechanical modelling of dry granular flow and impacts in laboratory flume tests. Rock Mech. Rock Eng. 41(1), 153–177 (2008)

    Article  ADS  Google Scholar 

  23. Jiang, Y.J., Towhata, I.: Experimental study of dry granular flow and impact behavior against a rigid retaining wall. Rock Mech. Rock Eng. 46(4), 713–729 (2013)

    Article  ADS  Google Scholar 

  24. Pudasaini, S.P., Hsiau, S.S., Wang, Y., Hutter, K.: Velocity measurements in dry granular avalanches using particle image velocimetry technique and comparison with theoretical predictions. Phys. Fluids 17(9), 093301 (2005)

    Article  ADS  Google Scholar 

  25. Cundall, P.A., Strack, O.D.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  26. Šmilauer, V., Catalano, E., Chareyre, B., Dorofeenko, S., Duriez, J., Gladky, A., Kozicki, J., Modenese, C., Scholtès, L., Sibille, L., Stránsk, J., Thoeni, K.: Yade Documentation. http://yade-dem.org/doc/ (2010)

  27. Bertrand, D., Nicot, F., Gotteland, P., Lambert, S.: Discrete element method (DEM) numerical modeling of double-twisted hexagonal mesh. Can. Geotech. J. 45(8), 1104–1117 (2008)

    Article  Google Scholar 

  28. Schwager, T., Pöschel, T.: Coefficient of restitution and linear-dashpot model revisited. Granul. Matter 9(6), 465–469 (2007)

    Article  Google Scholar 

  29. Ghaisas, N., Wassgren, C.R., Sadeghi, F.: Cage instabilities in cylindrical roller bearings. J. Tribol. 126(4), 681–689 (2004)

    Article  Google Scholar 

  30. Catalano, E., Chareyre, B., Barthélémy, E.: Pore-scale modeling of fluid-particles interaction and emerging poromechanical effects. Int. J. Numer. Anal. Meth. Geomech. 38(1), 51–71 (2014)

    Article  Google Scholar 

  31. Savage, S.B.: The mechanics of rapid granular flows. Adv. Appl. Mech. 24, 289–366 (1984)

    Article  MATH  Google Scholar 

  32. Chambers, J.M., Hastie, T.J.: Statistical Models in S. CRC Press, Inc., Boca Raton (1991)

    Google Scholar 

  33. Handy, R.L.: The arch in soil arching. J. Geotech. Eng. ASCE 111(3), 302–318 (1985)

    Article  Google Scholar 

  34. Azéma, E., Radjaï, F.: Force chains and contact network topology in sheared packings of elongated particles. Phys. Rev. E 85(3), 031303 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA grant agreement number 289911. The authors would also like to acknowledge the many valuable suggestions made by Thierry Faug, a researcher in Irstea research institute in Grenoble.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel Albaba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albaba, A., Lambert, S., Nicot, F. et al. Relation between microstructure and loading applied by a granular flow to a rigid wall using DEM modeling. Granular Matter 17, 603–616 (2015). https://doi.org/10.1007/s10035-015-0579-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-015-0579-8

Keywords

Navigation