Skip to main content
Log in

Flow–obstacle interaction in rapid granular avalanches: DEM simulation and comparison with experiment

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

This paper investigates the interaction between rapid granular flow and an obstacle. The distinct element method (DEM) is used to simulate the flow regimes observed in laboratory experiments. The relationship between the particle properties and the overall flow behaviour is obtained by using the DEM with a simple linear contact model. The flow regime is primarily controlled by the particle friction, viscous normal damping and particle rotation rather than the contact stiffness. Rolling constriction is introduced to account for dispersive flow. The velocity depth-profiles around the obstacles are not uniform but varying over the depth. The numerical results are compared with laboratory experiments of chute flow with dry granular material. Some important model parameters are obtained, which can be used to optimize defense structures in alpine regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barpi F., Borri-Brunetto M., Delli Veneri L.: Cellular-automata model for dense-snow avalanches. J. Cold Reg. Eng. 21, 121–140 (2007)

    Article  Google Scholar 

  2. Bharadwaj R., Wassgren C., Zenit R.: The unsteady drag force on a cylinder immersed in a dilute granular flow. Phys. Fluids 16, 1511–1517 (2006)

    Google Scholar 

  3. Cantero, M.I., García, M.H., Balachandar, S.: Effect of particle inertia on the dynamics of depositional particulate density currents. Comput. Geosci. (2008, accepted)

  4. Cundall P.A., Strack O.D.L.: A distinct element model for granular assemblies. Geotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  5. Cundall P.A.: Formulation of a three-dimensional Distinct Element Model. Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 25(3), 107–116 (1988)

    Google Scholar 

  6. Chehata D., Zenit R., Wassgren C.R.: Dense granular flow around an immersed cylinder. Phys. Fluids 15, 1622–1631 (2003)

    Article  ADS  Google Scholar 

  7. Chiou M.C., Wang Y., Hutter K.: Influence of obstacles on rapid granular flows. Acta Mech. 175, 105–122 (2005)

    Article  MATH  Google Scholar 

  8. Chiou, M.C.: Modelling dry granular avalanches past different obstructs: numerical simulations and laboratory analyses, Dissertation. Technical University Darmstadt, Germany (2005)

  9. Feda, J.: Mechanics of particulate materials. Elsevier, Amsterdam. ISBN: 978-0444997135 (1982)

  10. Gray J.M.N.T., Wieland M., Hutter K.: Gravity-driven free surface flow of granular avalanches over complex basal topography. Proc. R. Soc. A Math. Phys. Eng. Sci. 455, 1841–1874 (1998)

    Article  MathSciNet  Google Scholar 

  11. Gray J.M.N.T., Tai Y.-C., Noelle S.: Shock waves, dead-zones and particle-free regions in rapid granular free surface flows. J. Fluid Mech. 491, 161–181 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Gray J.M.N.T., Cui X.: Weak, strong and detached oblique shocks in gravity-driven granular free-surface flows. J. Fluid Mech. 579, 113–136 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Hákonardóttir K.M., Hogg A.J., Jóhannesson T., Tómasson G.G.: A laboratory study of the retarding effects of braking mounds on snow avalanches. J. Glaciol. 49(165), 191–200 (2003)

    Article  Google Scholar 

  14. Hákonardóttir K.M., Hogg A.J., Jóhannesson T., Kern M., Tiefenbacher F.: Large-scale avalanche breaking mound and catching dam experiments with snow: a study of the airborne jet. Surv. Geophys. 24, 543–554 (2003)

    Article  ADS  Google Scholar 

  15. Hákonardóttir, K.M.: The interaction between snow avalanches and dams. PhD thesis, University of Bristol, School of Mathematics (2004)

  16. Hákonardóttir, K.M., Hogg, A.J.: Oblique shocks in rapid granular flows. Phys. Fluids 17, 077101 (2005). doi:10.1063/1.1950688

    Google Scholar 

  17. Hanes D.M., Walton O.R.: Simulations and physical measurements of glass spheres flowing down a bumpy incline. Powder Technol. 109, 133–144 (2000)

    Article  Google Scholar 

  18. Harbitz, C.B., Domaas, U., Engen, A.: Design of snow avalanche deflecting dams. Oslo, NGI, Report 589000-4. Also in: Proceedings of the 9th Interpraevent 2000 Congress, 26th–30th June 2000, Villach, Austria, vol. 1, pp. 383–396, 41 (2000)

  19. Heaney, P.J., Prewitt, C.T., Gibbs, G.V.: Silica: physical behavior, geochemistry and materials applications. Rev. Mineral., vol. 29

  20. Hungr, O., McClung, D.M.: An equation for calculating snow avalanche runup against barriers. Avalanche formation, movement and effects. In: Proceedings of the Davos Symposium, September 1986, vol. 162, pp. 605–612. IAHS Publ. (1987)

  21. Hutter K., Wang Y., Pudasaini S.P.: The Savage–Hutter avalanche model: how far can it be pushed?. Phil. Trans. R. Soc. A Math. Phys. Eng. Sci. 363, 1507–1528 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Itasca Consulting Group, Inc: PFC3D (Particle Flow Code in 3D) Theory and Background Manual, Version 3.0. ICG, Minneapolis (2003)

  23. Jóhannesson T.: Run-up of two avalanches on the deflecting dams at Flateyri, northwestern Iceland. Ann. Glaciol. 32, 350–354 (2001)

    Article  ADS  Google Scholar 

  24. Khan K.M., Bushell G.: Comment on rolling friction in the dynamic simulation of sandpile formation. Phys. A 352, 522–524 (2005)

    Article  Google Scholar 

  25. Kruggel-Emden H., Simsek E., Rickelt S., Wirtz S., Scherer V.: Review and extension of normal force models for the Discrete Element Method. Powder Technol. 171, 157–173 (2007)

    Article  Google Scholar 

  26. Lehning M., Doorschot J., Bartelt P.: A snowdrift index based on SNOWPACK model calculations. Ann. Glaciol. 31, 382–386 (2000)

    Article  ADS  Google Scholar 

  27. Li S., Yao Q., Chen B., Zhang X., Ding Y.L.: Molecular dynamics simulation and continuum modelling of granular surface flow in rotating drums. Chin. Sci. Bull. 52(5), 692–700 (2007)

    Article  Google Scholar 

  28. McClung, D., Schaerer, P.: The Avalanche Handbook. The Mountaineers, Seattle (1993)

  29. McElwaine J., Nishimura K.: Ping-pong ball avalanche experiments. Ann. Glaciol. 32, 241–250 (2001)

    Article  ADS  Google Scholar 

  30. Mindlin R.D., Deresiewicz H.: Elastic spheres in contact under varying oblique forces. J. Appl. Mech. 20, 327–344 (1953)

    MATH  MathSciNet  Google Scholar 

  31. Moriguchi S., Borja R.I., Yashima A., Sawada K.: Estimating the impact force generated by granular flow on a rigid obstruction. Acta Geotech. 4, 57–71 (2009)

    Article  Google Scholar 

  32. Nicot F.: Constitutive modelling of snow as a cohesive-granular material. Granul. Matter 6, 47–60 (2004)

    Article  MATH  Google Scholar 

  33. Oñate E., Celigueta M.A., Idelsohn S.R.: Modeling bed erosion in free surface flows by the particle finite element method. Acta Geotech. 1, 237–252 (2007)

    Article  Google Scholar 

  34. Peña A.A., García-Rojo R., Herrmann H.J.: Influence of particle shape on sheared dense granular media. Granul. Matter 9, 279–291 (2007)

    Article  Google Scholar 

  35. Pitman E.B., Long L.E.: A two-fluid model for avalanche and debris flows. Phil. Trans. R. Soc. A Math. Phys. Eng. Sci. 363, 1573–1601 (2005)

    Article  MATH  ADS  Google Scholar 

  36. Pudasaini S.P., Hutter K.: Rapid Shear flows of dry granular masses down curved and twisted channels. J. Fluid Mech. 495, 193–208 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  37. Pudasaini, S.P., Hsiau, S., Wang, Y., Hutter, K.: Velocity measurements in dry granular avalanches using Particle Image Velocimetry-Technique and comparison with theoretical predictions. Phys. Fluids 17(9) (2005)

  38. Pudasaini, S.P., Hutter, K., Hsiau, S., Tai, S., Wang, Y., Katzenbach, R.: Rapid flow of dry granular materials down inclined chutes impinging on rigid walls. Phys. Fluids 19(5) (2007)

  39. Pudasaini, S.P., Wang, Y., Sheng, L., Hsiau, S., Hutter, K., Katzenbach, R.: Avalanching granular flows down curved and twisted channels: theoretical and experimental results. Phys. Fluids 20(7) (2008)

  40. Pudasaini S.P., Hutter K.: Avalanche Dynamics: Dynamics of Rapid Flows of Dense Granular Avalanches. Springer, Berlin (2007)

    Google Scholar 

  41. Sailer R., Fellin W., Fromm R., Jor̈g P., Rammer L., Sampl P., Schaffhauser A.: Snow avalanche mass-balance calculation and simulation-model verification. Ann. Glaciol. 48, 183–192 (2008)

    Article  ADS  Google Scholar 

  42. Savage S.B., Hutter K.: The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199, 177–215 (1989)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  43. Schwager T., Pöschel T.: Coefficient of restitution and linear–dashpot model revisited. Granul. Matter 9, 465–469 (2007)

    Article  Google Scholar 

  44. Schwager, T., Pöschel, T.: Coefficient of restitution for viscoelastic spheres: the effect of delayed recovery. arXiv:07081434 (2007)

  45. Stevens A.B., Hrenya C.M.: Comparison of soft-sphere models to measurements of collision properties during normal impacts. Powder Technol. 154, 99–109 (2005)

    Article  Google Scholar 

  46. White J.A., Borja R., Fredrich J.T.: Calculating the effective permeability of sandstone with multiscale lattice Boltzmann/finite element simulations. Acta Geotech. 1, 195–209 (2006)

    Article  Google Scholar 

  47. Wu C., Li L., Thornton C.: Rebound behaviour of spheres for plastic impacts. Int. J. Impact Eng. 28, 929–946 (2003)

    Article  Google Scholar 

  48. Zhang J., Hu Z., Ge W., Zhang Y., Li T., Li J.: Application of the discrete approach to the simulation of size segregation in granular chute flow. Ind. Eng. Chem. Res. 43, 5521–5528 (2004)

    Article  Google Scholar 

  49. Zhou Y.C., Wright B.D., Yang R.Y., Xu B.H., Yu A.B.: Rolling friction in the dynamic simulation of sandpile formation. Phys. A 269, 536–553 (1999)

    Article  Google Scholar 

  50. Zhou Y.C., Xu B.H., Yu A.B., Zulli P.: An experimental and numerical study of the angle of repose of coarse spheres. Powder Technol. 125, 45–54 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Teufelsbauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teufelsbauer, H., Wang, Y., Chiou, M.C. et al. Flow–obstacle interaction in rapid granular avalanches: DEM simulation and comparison with experiment. Granular Matter 11, 209–220 (2009). https://doi.org/10.1007/s10035-009-0142-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-009-0142-6

Keywords

Navigation