Skip to main content
Log in

Theories and Applications of CFD–DEM Coupling Approach for Granular Flow: A Review

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Bio-particulate matter includes grains, cereal crops, and biomass that are considered discrete materials with irregular size and shape. Although the flow of these particles can behave like a continuum fluid at times, their discontinuous behavior cannot be simulated with traditional continuum-based modeling. The Discrete Element Method (DEM), coupled with Computational Fluid Dynamics (CFD), is considered a promising numerical method that can model discrete particles by tracking the motion of each particle in fluid flow. DEM has been extensively used in the field of engineering, where its application is starting to achieve the popularity in agricultural processing. While CFD has been able to simulate the complex fluid flows with a quantitative and qualitative description of the temporal and spatial change of the flow field. This paper reviews the recent strategies and the existing applications of the CFD–DEM coupling approach in aerodynamic systems of bio-particles. It mainly represents four principal aspects: the definition of aerodynamic systems with its principals, modeling of particle motion including interaction forces of particle–particle and particle–fluid in the system, CFD–DEM coupling methodologies, and drag correlation models with theoretical developments, and the applications of aerodynamic systems related to the agricultural field. The existing published literature indicates that CFD–DEM is a promising approach to study the bio-particulate matter behavior immersed in fluid flow, and it could be benefiting from developing and optimizing the device's geometry and the operations. The main findings are discussed and summarized as a part of the review, where future developments and challenges are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

\(A_{i}\) :

Projected area of particle

\(a\) :

Separation radius between particles

\(C_{d}\) :

Drag coefficient

\(C_{ij}\) :

Convection

\(D_{T,ij}\) :

Turbulent diffusion

\(D_{L,ij}\) :

Molecular diffusion

\(D\) :

Domain diameter

\(d\) :

Normal distance to the wall

\(d_{i}\) :

Particle diameter

\(d_{{i_{vol} }}\) :

Particle diameter with the same volume of the actual one

\(E_{i}\) :

Young’s modulus of particle

\(E_{w}\) :

Young’s modulus of wall boundary

\(F_{net}\) :

Net force acting on a particle

\(F_{ij}^{C}\) :

Total contact force acting on a particle

\(F_{i}^{f}\) :

Fluid-particle interaction force

\(F_{ij}^{n}\) :

Normal contact force on a particle

\(F_{ij}^{t}\) :

Tangential contact force on a particle

\(F_{i}^{t,T}\) :

Tangential contact force at current time

\(F_{i}^{{t,\left( {T - \Delta T} \right)}}\) :

Tangential contact force at previous time

\(F_{i}^{n,T}\) :

Normal contact force at current time

\(F_{i}^{{n,\left( {T - \Delta T} \right)}}\) :

Normal contact force at previous time

\(F_{{i_{adh} }}^{n,T}\) :

Normal adhesive force at current time

\(F_{ij}\) :

Force production by system rotation

\(F_{i}^{f}\) :

Interaction force of the fluid on particle

\(f_{i}^{g}\) :

Gravity force

\(f_{adh}\) :

Adhesive force fraction

\(G_{k}\) :

Kinetic energy generation due to the velocity

\(G_{b}\) :

Kinetic energy generation due to buoyancy

\(G_{ij}\) :

Buoyancy production rate of \(\overline{{u_{i}^{\prime } u_{j}^{\prime } }}\)

\(g\) :

Gravity acceleration

\(T_{K}\) :

Kolmogorov time scale

\(T_{e}\) :

Turnover time of large eddy

\(T\) :

Time

\(u\) :

Root mean square of fluid velocity

\(u_{f}\) :

Average velocity component of fluid

\(V_{a}\) :

Air velocity

\(V_{T}\) :

Terminal velocity

\(V_{f}\) :

Average velocity of the fluid

\(V_{i}\) and \(V_{j}\) :

Particles velocity before interaction

\(V_{i}^{^{\prime}}\) and \(V_{j}^{^{\prime}}\) :

Particles velocity after interaction

\(Vol_{i}\) :

Particle volume

\(Vol\) :

Volume occupied by particles and fluid

\(Y_{M}\) :

Dilatation contribution over dissipation rate

\(Z\) :

Particle size or geometry

\(\phi_{ij,1}\) :

Slow pressure-strain

\(\phi_{ij,2}\) :

Rapid pressure-strain

\(\phi_{ij,3}\) :

Wall-reflection term

\(\phi_{ij}\) :

Pressure strain

\(\emptyset_{i}\) :

Particle sphericity

\(\eta\) :

Damping ratio

\(\eta^{t}\) :

Tangential damping ratio

\(K_{1}\) :

Stokes’ shape factor

\(K_{2}\) :

Newton’s shape factor

\(k_{a}\) :

Coefficient of aerodynamic resistance

\(K_{u}^{n}\) :

Unloading contact stiffnesses

\(K_{l}^{n}\) :

Loading contact stiffnesses

\(l\) :

Length scale of the energy-containing eddies

\(m^{*}\) :

Equivalent mass of particles

\(m_{i} \,\,{\text{and}}\,\, m_{j}\) :

Mass of particles \(i\,\, {\text{and}}\,\, j\)

\(N\) :

Number of particles

\(n_{k}\) :

Component of \(x_{k}\) normal to the wall

\(\widehat{{n_{c} }}\) :

Unit vector in the normal direction

\(n\,\,{\text{and}} \,\, t\) :

Normal and tangential coordinates

\(p\) :

Pressure shared by two phases

\(P_{max}\) :

Maximum liquid bridge tensile force

\(P_{ij}\) :

Stress production rate of \(\overline{{u_{i}^{^{\prime}} u_{j}^{^{\prime}} }}\)

\(R_{{e_{i} }}\) :

Particle Reynolds number

\(R_{\epsilon }\) :

Dissipation of swirl and rotational effect

\(R_{e}\) :

Reynolds number

\(R_{i}\,\, {\text{and}}\,\, R_{j}\) :

Radii of particles \(i\,\, {\text{and}}\,\, j\)

\(s_{max}^{t}\) :

Maximum relative tangential displacement

\(s^{t}\) :

Tangential relative displacement at contact

\(S^{n}\) :

Normal overlapping

\(\Delta S^{n}\) :

Change in the normal overlapping

\(\Delta S^{t}\) :

Change in the tangential overlapping

\(S^{n,T}\) :

Normal overlap value at the current time

\(S^{n,T - \Delta T }\) :

Normal overlap value at the previous time

\(S_{k}\) and \(S_{\epsilon }\) :

Constant source terms for user-defined

\(S_{user}\) :

Constant source term for user-defined

\(\Delta T\) :

Timestep

\(T_{i}\) :

Response time of particle

\(\rho_{f}\) :

Fluid density

\(\rho_{f} \overline{{u_{i}^{^{\prime}} u_{j}^{^{\prime}} }}\) :

Reynolds stress tensor

\(\rho_{a}\) :

Air density

\(\rho_{i}\) :

Particle density

\(\mu_{f}\) :

Fluid turbulent viscosity

\(\mu_{t}\) :

Turbulent viscosity

\(\mu\) :

Friction coefficient

\(\mu_{a}\) :

Dynamic viscosity of the air

\(\mu_{{f_{eff} }}\) :

Effective turbulent viscosity of a fluid

\(\alpha_{f}\) :

Fluid volume fraction

\(\alpha_{k}\) and \(\alpha_{\epsilon }\) :

Inverse effective Prandtl number for \(k\) and \(\epsilon\)

\(\alpha_{i}\) :

Particle volume fraction of

\(\varepsilon\) :

Coefficient of restitution

\(\sigma_{k}\) and \(\sigma_{\epsilon }\) :

Turbulent Prandtl numbers for \(k\) and \(\epsilon\)

\({\Gamma }\) :

Surface energy

\(\epsilon_{ij}\) :

Dissipation

\(\delta_{adh}\) :

Adhesive distance

\(\tau_{f }\) :

Viscous stress tensor

\(\upsilon_{f}\) :

Kinematic viscosity of the fluid

\(\frac{d}{dT}S^{t}\) :

Relative tangential velocity at the contact

References

  1. Simonyan KJ, Yiljep YD (2008) Investigating grain separation and cleaning efficiency distribution of a conventional stationary Rasp-bar Sorghum Thresher. Agric Eng Int CIGR J 10:1–13

    Google Scholar 

  2. Wang YJ, Chung DS, Spillman CK et al (1994) Evaluation of laboratory grain cleaning and separating equipment: part I. Trans ASAE 37:507–513

    Article  Google Scholar 

  3. Sokhansanj S, Fang R, Opoku A (1999) Influence of physical properties and operating conditions on particle segregation on gravity table. Appl Eng Agric. 15(5):495–499. https://doi.org/10.13031/2013.5809

    Article  Google Scholar 

  4. Pouliot Y, Conway V, Leclerc P (2014) Separation and concentration technologies in food processing. In: Clark S, Jung S, Lamsal B (eds) Food processing: principles and applications, second. John Wiley and Sons Ltd, Québec, pp 33–60

    Chapter  Google Scholar 

  5. Sosulski F (1987) Yield and functional properties of air classified protein and starch fractions from eight legume flours. J Am Chem Soc 6:363–370

    Google Scholar 

  6. Uhl JB, Lamp BJ (1966) Pneumatic separation of grain and straw mixtures. Trans ASAE 61–135:244–246

    Google Scholar 

  7. Hollatz B, Quick GR (2003) Combine tailings returns, part 1: the effects of combine performance and settings on tailings. In: International conference on crop harvesting and processing. ASABE, St. Joseph, Michigan, Louisville, Kentucky, USA, p 22

  8. Tylek P, Walczyk J (2003) Critical air velocity as a separation feature in nuts of european beech (Fagus sylvatica L.). Electron J Polish Agric Univ, 6

  9. IAEE (2008) Develop technical and technological bases improve separation of grain and seed set of physical and mechanical properties. Glevaha

  10. Kotov BI, Stepanenko SP, Swiftly VA, Smith JG (2009) Design, production and operation of agricultural machinery. A Natl Interdep Sci Tech Collect 39:209–214

    Google Scholar 

  11. Kotov BI (2009) The theory of separation of grains in the air stream. A Natl Interdep Sci Tech Collect 39:209–214

    Google Scholar 

  12. Stepanenko S (2017) Research pneumatic gravity separation grain materials. Scientific proceedings V international scientific-technical conference “agricultural machinery.” Glevakha, Ukraine, pp 143–145

    Google Scholar 

  13. Reichert RD (1982) Air classification of peas (Pisum sativum) varying widely in protein content. J Food Sci 47:1263–1267

    Article  Google Scholar 

  14. Emami S, Tabil LG, Tyler RT, Crerar WJ (2007) Starch-protein separation from chickpea flour using a hydrocyclone. J Food Eng 82:460–465. https://doi.org/10.1016/j.jfoodeng.2007.03.002

    Article  Google Scholar 

  15. Panasiewicz M, Sobczak P, Mazur J et al (2012) The technique and analysis of the process of separation and cleaning grain materials. J Food Eng 109:603–608. https://doi.org/10.1016/j.jfoodeng.2011.10.010

    Article  Google Scholar 

  16. Hellevang KJ (1985) Pneumatic grain conveyors. Fargo, North Dakota

    Google Scholar 

  17. Piven VV (2018) Determination of the extent of fraction in air separation of grain material. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/1059/1/012001

    Article  Google Scholar 

  18. Clarke B (1985) Cleaning seeds by fluidization. J Agric Eng Res 31:231–242. https://doi.org/10.1016/0021-8634(85)90090-3

    Article  MathSciNet  Google Scholar 

  19. Gorial BY, O’Callaghan JR (1990) Aerodynamic properties of grain/straw materials. J Agric Eng Res 46:275–290. https://doi.org/10.1016/S0021-8634(05)80132-5

    Article  Google Scholar 

  20. Zewdu AD (2007) Aerodynamic properties of tef grain and straw material. Biosyst Eng 98:304–309. https://doi.org/10.1016/j.biosystemseng.2007.08.003

    Article  Google Scholar 

  21. Samantaray SK, Mohapatra SS, Munshi B (2018) Experimental findings and analysis of terminal velocity and drag coefficient of Raschig Ring in vertical and inclined channel. Powder Technol 340:440–448. https://doi.org/10.1016/j.powtec.2018.09.030

    Article  Google Scholar 

  22. Zhang L, Honaker R, Liu W et al (2015) Calculation of terminal velocity in transitional flow for spherical particle. Int J Min Sci Technol 25:311–317. https://doi.org/10.1016/j.ijmst.2015.02.022

    Article  Google Scholar 

  23. Czernik Z (1983) Studies of aerodynamical features of seeds of Scotch pine, Norway spruce and European larch (Badania wlasciwosci aerodynamicznych nasion sosny zwyczajnej, swierka pospolitego i modrzewia europejskieg). Sylwan 9:31–40

    Google Scholar 

  24. Ghamari S, Borghei AM, Rabbani H et al (2010) Modeling the terminal velocity of agricultural seeds with artificial neural networks. Afr J Agric Res 5:389–398. https://doi.org/10.5897/AJAR09.626

    Article  Google Scholar 

  25. Khodabakhshian R, Emadi B, Khojastehpour M, Golzarian MR (2018) Aerodynamic separation and cleaning of pomegranate arils from rind and white segments (locular septa). J Saudi Soc Agric Sci 17:61–68. https://doi.org/10.1016/j.jssas.2016.01.003

    Article  Google Scholar 

  26. Mohsenin NN (1986) Physical properties of plant and animal materials. Gordon and Breach Science, New York

    Google Scholar 

  27. Tylek P, Walczyk J (2004) Effectiveness of the pneumatic separation of Norway spruce Picea abies (L.) Karst seeds. Dendrobiology 51:101–104

    Google Scholar 

  28. Levenspiel O, Haider A (1989) Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technol 58:63–70. https://doi.org/10.1016/0032-59109(89)80008-7

    Article  Google Scholar 

  29. De AE, Spogis N, Taranto OP, Silva MA (2019) Theoretical study of pneumatic separation of sugarcane bagasse particles. Biomass Bioenerg 127:105256. https://doi.org/10.1016/j.biombioe.2019.105256

    Article  Google Scholar 

  30. Lapple CE (1951) Fluid and particle mechanics, 1st edn. University of Delaware, Newark

    Google Scholar 

  31. Hauhouot-O’Hara M, Criner BR, Brusewitz GH, Solie JB (2000) Selected physical characteristics and aerodynamic properties of cheat seed for separation from wheat. J Sci Res Dev, 2

  32. Afonso Júnior PC, Corrêa PC, Pinto FAC, Queiroz DM (2007) Aerodynamic properties of coffee cherries and beans. Biosyst Eng 98:39–46. https://doi.org/10.1016/j.biosystemseng.2007.03.010

    Article  Google Scholar 

  33. Shellard JE, Macmillan RH (1978) Aerodynamic properties of threshed wheat materials. J Agric Eng Res 23:273–281. https://doi.org/10.1016/0021-8634(78)90101-4

    Article  Google Scholar 

  34. Shahbazi F (2013) Aerodynamic properties of wild mustard (Sinapis arvensis L.) seed for separation from canola. J Sci Food Agric 93:1466–1470. https://doi.org/10.1002/jsfa.5916

    Article  Google Scholar 

  35. El-Emam MA, Shi W, Zhou L (2019) CFD-DEM simulation and optimization of gas-cyclone performance with realistic macroscopic particulate matter. Adv Powder Technol 30:2686–2702. https://doi.org/10.1016/j.apt.2019.08.015

    Article  Google Scholar 

  36. Binelo MO, de Lima RF, Khatchatourian OA, Stránský J (2019) Modelling of the drag force of agricultural seeds applied to the discrete element method. Biosyst Eng 178:168–175. https://doi.org/10.1016/j.biosystemseng.2018.11.013

    Article  Google Scholar 

  37. Khatchatourian OA, Binelo MO, de Lima RF (2014) Simulation of soya bean flow in mixed-flow dryers using DEM. Biosyst Eng 123:68–76. https://doi.org/10.1016/j.biosystemseng.2014.05.003

    Article  Google Scholar 

  38. Guo Y, Curtis JS (2015) Discrete element method simulations for complex granular flows. Annu Rev Fluid Mech 47:21–46. https://doi.org/10.1146/annurev-fluid-010814-014644

    Article  MathSciNet  Google Scholar 

  39. Li H, Li Y, Gao F et al (2012) CFD-DEM simulation of material motion in air-and-screen cleaning device. Comput Electron Agric 88:111–119. https://doi.org/10.1016/j.compag.2012.07.006

    Article  Google Scholar 

  40. Ren B, Zhong W, Chen Y et al (2012) CFD-DEM simulation of spouting of corn-shaped particles. Particuology 10:562–572. https://doi.org/10.1016/j.partic.2012.03.011

    Article  Google Scholar 

  41. Liu X, Gan J, Zhong W, Yu A (2019) Particle shape effects on dynamic behaviors in a spouted bed: CFD-DEM study. Powder Technol. https://doi.org/10.1016/j.powtec.2019.07.099

    Article  Google Scholar 

  42. Han D, Zhang D, Jing H et al (2018) DEM-CFD coupling simulation and optimization of an inside-filling air-blowing maize precision seed-metering device. Comput Electron Agric 150:426–438. https://doi.org/10.1016/j.compag.2018.05.006

    Article  Google Scholar 

  43. Tsuji Y (2007) Multi-scale modeling of dense phase gas–particle flow. Chem Eng Sci 62:3410–3418

    Article  Google Scholar 

  44. Tsuji Y, Tanaka T, Ishida T (1992) Lagrangian numerical-simulation of plug flow of cohesionless particles in ahorizontal pipe. Powder Technol 71:239–250

    Article  Google Scholar 

  45. Zhou ZY, Kuang SB, Chu KW, Yu AB (2010) Assessments of CFD–DEM models in particle–fluid flow modelling. J Fluid Mech 661:482–510

    Article  MathSciNet  Google Scholar 

  46. Wang B, Chu KW, Yu AB (2007) Numerical study of particle–fluid flow in a hydrocyclone. Ind Eng Chem Res 46:4695–4705

    Article  Google Scholar 

  47. Xu BH, Yu AB (1997) Numerical simulation of the gas–solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics. Chem Eng Sci 52:2785–2809

    Article  Google Scholar 

  48. Chu KW, Wang B, Yu AB, Vince A (2009) CFD–DEM modelling of multiphase flow in dense medium cyclones. PowderTechnology 193:235–247

    Google Scholar 

  49. Cortés C, Gil A (2007) Modeling the gas and particle flow inside cyclone separators. Prog Energy Combust Sci 33:409–452. https://doi.org/10.1016/j.pecs.2007.02.001

    Article  Google Scholar 

  50. Derksen JJ, Sundaresan S, van den Akker HEA (2006) Simulation of mass-loading effects in gas-solid cyclone separators. Powder Technol 163:59–68. https://doi.org/10.1016/B978-008044544-1/50089-3

    Article  Google Scholar 

  51. Horabik J, Molenda M (2016) Parameters and contact models for DEM simulations of agricultural granular materials: a review. Biosyst Eng 147:206–225. https://doi.org/10.1016/j.biosystemseng.2016.02.017

    Article  Google Scholar 

  52. Almeida E, Spogis N, Silva MA (2016) Computational study of the pneumatic separation of sugarcane bagasse. In: Nzihou A (ed), 6th international conference on engineering for waste and biomass valorisation. Albi : Mines Albi, 2016, Albi, France, pp 1–16

  53. Fonte CB, Jr JAAO, Almeida LC De (2015) Dem-Cfd coupling : mathematical modelling and case studies using Rocky-Dem ® and Ansys Fluent ®. In: Eleventh international conference on CFD in the minerals and process industries. CSIRO Organization, Melbourne, Australia, pp 1–7

  54. Chu KW, Wang B, Xu DL et al (2011) CFD-DEM simulation of the gas-solid flow in a cyclone separator. Chem Eng Sci 66:834–847. https://doi.org/10.1016/j.ces.2010.11.026

    Article  Google Scholar 

  55. Romaní Fernández X, Nirschl H (2013) Simulation of particles and sediment behaviour in centrifugal field by coupling CFD and DEM. Chem Eng Sci 94:7–19. https://doi.org/10.1016/j.ces.2013.02.039

    Article  Google Scholar 

  56. Wang Y, Williams K, Jones M, Chen B (2017) CFD simulation methodology for gas-solid flow in bypass pneumatic conveying: a review. Appl Therm Eng 125:185–208. https://doi.org/10.1016/j.applthermaleng.2017.05.063

    Article  Google Scholar 

  57. Ullah A, Hong K, Gao Y et al (2019) An overview of Eulerian CFD modeling and simulation of non-spherical biomass particles. Renew Energy 141:1054–1066. https://doi.org/10.1016/j.renene.2019.04.074

    Article  Google Scholar 

  58. Norouzi HR, Zarghami R, Sotudeh-gharebagh R, Mostoufi N (2016) Coupled CFD-DEM modeling : formulation, implementation and application to multiphase flows. Wiley, New York

    Book  Google Scholar 

  59. Boac JM, Ambrose RPK, Casada ME et al (2014) Applications of discrete element method in modeling of grain postharvest operations. Food Eng Rev 6:128–149. https://doi.org/10.1007/s12393-014-9090-y

    Article  Google Scholar 

  60. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotechnique 29:47–65. https://doi.org/10.1680/geot.1979.29.1.47

    Article  Google Scholar 

  61. Dewicki G (2003) Bulk material handling and processing: numerical techniques and simulation of granular material. Bulk Solids Handl Int J Storing Handl Bulk Mater 23:110–113

    Google Scholar 

  62. Zhu HP, Zhou ZY, Yang RY, Yu AB (2007) Discrete particle simulation of particulate systems: theoretical developments. Chem Eng Sci 62:3378–3396. https://doi.org/10.1016/j.ces.2006.12.089

    Article  Google Scholar 

  63. Berger R, Kloss C, Kohlmeyer A, Pirker S (2015) Hybrid parallelization of the LIGGGHTS open-source DEM code. Powder Technol 278:234–247. https://doi.org/10.1016/j.powtec.2015.03.019

    Article  Google Scholar 

  64. Theuerkauf J, Dhodapkar S, Jacob K (2007) Modeling granular flow using discrete element method—from theory to practice. Chem Eng 114:154–162

    Google Scholar 

  65. Williams JR, Hocking G, Mustoe G (1985) The theoretical basis of the discrete element method. In: NUMETA ’85 conference. Balkema, Rotterdam, pp 897–906

  66. Zhu HP, Zhou ZY, Yang RY, Yu AB (2008) Discrete particle simulation of particulate systems: a review of major applications and findings. Chem Eng Sci 63:5728–5770. https://doi.org/10.1016/j.ces.2008.08.006

    Article  Google Scholar 

  67. Keppler I, Kocsis L, Oldal I et al (2012) Grain velocity distribution in a mixed flow dryer. Adv Powder Technol 23:824–832. https://doi.org/10.1016/j.apt.2011.11.003

    Article  Google Scholar 

  68. Zhang X, Vu-Quoc L (2000) Simulation of chute flow of soybeans using an improved tangential force-displacement model. Mech Mater 32:115–129. https://doi.org/10.1016/S0167-6636(99)00043-5

    Article  Google Scholar 

  69. Weigler F, Scaar H, Mellmann J (2012) Investigation of particle and air flows in a mixed-flow dryer. Dry Technol 30:1730–1741. https://doi.org/10.1080/07373937.2012.703742

    Article  Google Scholar 

  70. Sturm M, Wirtz S, Scherer V, Denecke J (2010) Coupled DEM-CFD simulation of pneumatically conveyed granular media. Chem Eng Technol 33:1184–1192. https://doi.org/10.1002/ceat.201000162

    Article  Google Scholar 

  71. Lim EWC, Wang CH, Yu AB (2006) Discrete element simulation for pneumatic conveying of granular material. AIChE J 52:496–509. https://doi.org/10.1002/aic.10645

    Article  Google Scholar 

  72. Parafiniuk P, Molenda M, Horabik J (2013) Discharge of rapeseeds from a model silo: physical testing and discrete element method simulations. Comput Electron Agric 97:40–46. https://doi.org/10.1016/j.compag.2013.06.008

    Article  Google Scholar 

  73. Raji AO, Favier JF (2004) Model for the deformation in agricultural and food particulate materials under bulk compressive loading using discrete element method. II: Compression of oilseeds. J Food Eng 64:373–380. https://doi.org/10.1016/j.jfoodeng.2003.11.005

    Article  Google Scholar 

  74. Anand A, Curtis JS, Wassgren CR et al (2009) Predicting discharge dynamics of wet cohesive particles from a rectangular hopper using the discrete element method (DEM). Chem Eng Sci 64:5268–5275. https://doi.org/10.1016/j.ces.2009.09.001

    Article  Google Scholar 

  75. Sakaguchi E, Suzuki M, Favier JF, Kawakami S (2001) Numerical simulation of the shaking separation of Paddy and Brown rice using the discrete element method. J Agric Eng Res 79:307–315. https://doi.org/10.1006/jaer.2001.0706

    Article  Google Scholar 

  76. Ma Z, Li Y, Xu L (2015) Discrete-element method simulation of agricultural particles’ motion in variable-amplitude screen box. Comput Electron Agric 118:92–99. https://doi.org/10.1016/j.compag.2015.08.030

    Article  Google Scholar 

  77. Lenaerts B, Aertsen T, Tijskens E et al (2014) Simulation of grain-straw separation by discrete element modeling with bendable straw particles. Comput Electron Agric 101:24–33. https://doi.org/10.1016/j.compag.2013.12.002

    Article  Google Scholar 

  78. Woo MW, Daud WRW, Mujumdar AS et al (2010) Role of rheological characteristics in amorphous food particle-wall collisions in spray drying. Powder Technol 198:251–257. https://doi.org/10.1016/j.powtec.2009.11.015

    Article  Google Scholar 

  79. Adewumi BA (2008) 2D modeling of grain transport and separation in the horizontal air stream. In: Food processing automation conference CD-Rom, pp 1–10

  80. Guo Y, Wu CY, Kafui KD, Thornton C (2011) 3D DEM/CFD analysis of size-induced segregation during die filling. Powder Technol 206:177–188. https://doi.org/10.1016/j.powtec.2010.05.029

    Article  Google Scholar 

  81. Lei X, Liao Y, Liao Q (2016) Simulation of seed motion in seed feeding device with DEM-CFD coupling approach for rapeseed and wheat. Comput Electron Agric 131:29–39. https://doi.org/10.1016/j.compag.2016.11.006

    Article  Google Scholar 

  82. Li J, Webb C, Pandiella SS, Campbell GM (2002) A numerical simulation of separation of crop seeds by screening: effect of particle bed depth. Food Bioprod Process Trans Inst Chem Eng Part C 80:109–117. https://doi.org/10.1205/09603080252938744

    Article  Google Scholar 

  83. Li J, Webb C, Pandiella SS, Campbell GM (2003) Discrete particle motion on sieves: a numerical study using the DEM simulation. Powder Technol 133:190–202. https://doi.org/10.1016/S0032-5910(03)00092-5

    Article  Google Scholar 

  84. Boac JM, Casada ME, Maghirang RG, Harner JP (2012) 3-D and quasi-2-d discrete element modeling of grain commingling in a bucket elevator boot system. Trans ASABE 55:659–672

    Article  Google Scholar 

  85. González-Montellano C, Baguena EM, Ramírez-Gómez Á, Barreiro P (2014) Discrete element analysis for the assessment of the accuracy of load cell-based dynamic weighing systems in grape harvesters under different ground conditions. Comput Electron Agric 100:13–23. https://doi.org/10.1016/j.compag.2013.10.008

    Article  Google Scholar 

  86. Van Zeebroeck M, Tijskens E, Dintwa E et al (2006) The discrete element method (DEM) to simulate fruit impact damage during transport and handling: model building and validation of DEM to predict bruise damage of apples. Postharvest Biol Technol 41:85–91. https://doi.org/10.1016/j.postharvbio.2006.02.007

    Article  Google Scholar 

  87. Ramírez-Gómez Á, Gallego E, Fuentes JM et al (2014) Values for particle-scale properties of biomass briquettes made from agroforestry residues. Particuology 12:100–106. https://doi.org/10.1016/j.partic.2013.05.007

    Article  Google Scholar 

  88. Cundall PA (1988) Detect and represent contacts in a system composed of many polyhedral blocks. Int J Rock Mech Min Sci Geomech 25:107–116

    Article  Google Scholar 

  89. Hart R, Cundall PA, Lemos J (1988) Formulation of a three-dimensional distinct element model-part II. Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks. Int J Rock Mech Min Sci 25:117–125. https://doi.org/10.1016/0148-9062(88)92294-2

    Article  Google Scholar 

  90. Kosinski P, Hoffmann AC (2010) An extension of the hard-sphere particle-particle collision model to study agglomeration. Chem Eng Sci 65:3231–3239. https://doi.org/10.1016/j.ces.2010.02.012

    Article  Google Scholar 

  91. O’Sullivan C (2011) Particle-based discrete element modeling: geomechanics perspective. Int J Geomech 11:449–464. https://doi.org/10.1061/(asce)gm.1943-5622.0000024

    Article  Google Scholar 

  92. O’Sullivan C (2011) Particulate discrete element modelling : a geomechanics perspective, 1st edn. Spon Press, New York

    Book  Google Scholar 

  93. Hoomans BPB, Kuipers JAM, Briels WJ, Van Swaaij WPM (1996) Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidized bed: a hard-sphere approch. Chem Eng Sci 51:99–118. https://doi.org/10.1016/0009-2509(95)00271-5

    Article  Google Scholar 

  94. Fortin J, Millet O, de Saxcé G (2005) Numerical simulation of granular materials by an improved discrete element method. Int J Numer Methods Eng 62:639–663. https://doi.org/10.1002/nme.1209

    Article  MathSciNet  MATH  Google Scholar 

  95. Duran J (2000) Sands, powders, and grains: an introduction to the physics of granular materials. Springer, New York

    Book  MATH  Google Scholar 

  96. Tsuji Y, Kawaguchi T, Tanaka T (1993) Discrete particle simulation of two-dimensional fluidized bed. Powder Technol 77:79–87. https://doi.org/10.1016/0032-5910(93)85010-7

    Article  Google Scholar 

  97. Zhao J, Shan T (2013) Coupled CFD-DEM simulation of fluid-particle interaction in geomechanics. Powder Technol 239:248–258. https://doi.org/10.1016/j.powtec.2013.02.003

    Article  Google Scholar 

  98. Campbell CS (2006) Granular material flows: an overview. Powder Technol 162:208–229. https://doi.org/10.1016/j.powtec.2005.12.008

    Article  Google Scholar 

  99. Delaney GW, Inagaki S, Aste T (2007) Fine tuning DEM simulations to perform virtual experiments with three-dimensional granular packings. In: Tomaso A, Di MT, Tordesillas A (eds) Granular and complex materials. World Scientific, Singapore, pp 141–168

    MATH  Google Scholar 

  100. Crowe CT, Schwarzkopf JD, Sommerfeld M, Tsuji Y (2011) Multiphase flows with droplets and particles, 2nd edn. CRC Press, Taylor and Francis Group, Boca Raton

    Book  Google Scholar 

  101. Carlos Varas AE, Peters EAJF, Kuipers JAM (2017) CFD-DEM simulations and experimental validation of clustering phenomena and riser hydrodynamics. Chem Eng Sci 169:246–258. https://doi.org/10.1016/j.ces.2016.08.030

    Article  Google Scholar 

  102. He Y, Bayly AE, Hassanpour A (2018) Coupling CFD-DEM with dynamic meshing: a new approach for fluid-structure interaction in particle-fluid flows. Powder Technol 325:620–631. https://doi.org/10.1016/j.powtec.2017.11.045

    Article  Google Scholar 

  103. Neuwirth J, Antonyuk S, Heinrich S, Jacob M (2013) CFD-DEM study and direct measurement of the granular flow in a rotor granulator. Chem Eng Sci 86:151–163. https://doi.org/10.1016/j.ces.2012.07.005

    Article  Google Scholar 

  104. Kuang SB, Yu AB, Zou ZS (2009) Computational study of flow regimes in vertical pneumatic conveying. Ind Eng Chem Res 48:6846–6858

    Article  Google Scholar 

  105. Akhshik S, Behzad M, Rajabi M (2015) CFD-DEM approach to investigate the effect of drill pipe rotation on cuttings transport behavior. J Pet Sci Eng 127:229–244. https://doi.org/10.1016/j.petrol.2015.01.017

    Article  Google Scholar 

  106. Boac JM, Casada ME, Maghirang RG (2010) Material and interaction properties of selected grains and oilseeds for modeling discrete particles. Trans ASABE. 53:1201–1216. https://doi.org/10.13031/2013.32577

    Article  Google Scholar 

  107. ESSS-Rocky (2018) Rocky-Dem technical manual. In: Rocky E (ed) Models used in Rocky, 4.13. ESSS, Rio de Janeiro, Brazi, pp 3–11

  108. Cundall PA (1988) Computer simulations of dense sphere assemblies. Micromech Granul Mater 20:113–123. https://doi.org/10.1016/B978-0-444-70523-5.50021-7

    Article  Google Scholar 

  109. Timoshenko SP, Goodier JN (1970) Theory of elasticity, 3rd edn. McGraw-Hill, New York

    MATH  Google Scholar 

  110. ASAE S368.4 (2001) Compression test of food materials of convex shape, revised. ASAE, Michigan

    Google Scholar 

  111. Antypov D, Elliott JA (2011) On an analytical solution for the damped Hertzian spring. Europhys Lett. https://doi.org/10.1209/0295-5075/94/50004

    Article  Google Scholar 

  112. Walton OR, Braun RL (1986) Viscosity, granular-temperature, and stress calculations for shearing assemblies of inelastic, frictional disks. J Rheol (NY) 30:949–980. https://doi.org/10.1122/1.549893

    Article  Google Scholar 

  113. Tomas J (2000) Particle adhesion fundamentals and bulk powder consolidation. KONA Powder Part J 18:157–169. https://doi.org/10.14356/kona.2000022

    Article  Google Scholar 

  114. Luding S (2008) Cohesive, frictional powders: contact models for tension. Granul Matter 10:235–246. https://doi.org/10.1007/s10035-008-0099-x

    Article  MATH  Google Scholar 

  115. Freireich B, Litster J, Wassgren C (2009) Using the discrete element method to predict collision-scale behavior: a sensitivity analysis. Chem Eng Sci 64:3407–3416. https://doi.org/10.1016/j.ces.2009.04.019

    Article  Google Scholar 

  116. Walton OR (1993) Numerical simulation of inelastic, frictional particle-particle interactions. In: Roco MC (ed) Particulate two-phase flow. Butterworth-Heinemann, Adivision of Reed Publishing (USA) Inc., Reed, pp 855–947

    Google Scholar 

  117. Bartsch P, Zunft S (2019) Granular flow around the horizontal tubes of a particle heat exchanger : DEM-simulation and experimental validation. Sol Energy 182:48–56. https://doi.org/10.1016/j.solener.2019.01.086

    Article  Google Scholar 

  118. Vivacqua V, López A, Hammond R et al (2019) DEM analysis of the effect of particle shape, cohesion and strain rate on powder rheometry. Powder Technol 342:653–663. https://doi.org/10.1016/j.powtec.2018.10.034

    Article  Google Scholar 

  119. Seville JPK, Willett CD, Knight PC (2000) Interparticle forces in fluidisation.pdf. Powder Technol 113:261–268. https://doi.org/10.1016/S0032-5910(00)00309-0

    Article  Google Scholar 

  120. Schwager T, Pöschel T (2007) Coefficient of restitution and linear-dashpot model revisited. Granul Matter 9:465–469. https://doi.org/10.1007/s10035-007-0065-z

    Article  Google Scholar 

  121. Van Zeebroeck M, Tijskens E, Van Liedekerke P et al (2003) Determination of the dynamical behaviour of biological materials during impact using a pendulum device. J Sound Vib 266:465–480. https://doi.org/10.1016/S0022-460X(03)00579-0

    Article  Google Scholar 

  122. Stropek Z, Gołacki K (2015) A new method for measuring impact related bruises in fruits. Postharvest Biol Technol 110:131–139. https://doi.org/10.1016/j.postharvbio.2015.07.005

    Article  Google Scholar 

  123. Deresiewicz H, Mindlin RD (1953) Elastic spheres in contact under varying oblique forces. J Appl Mech 20:327–344

    Article  MathSciNet  MATH  Google Scholar 

  124. Vu-Quoc L, Zhang X, Walton OR (2000) A 3-D discrete-element method for dry granular flows of ellipsoidal particles. Comput Methods Appl Mech Eng 187:483–528. https://doi.org/10.1016/S0045-7825(99)00337-0

    Article  MATH  Google Scholar 

  125. Di Renzo A, Di Maio FP (2004) Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes. Chem Eng Sci 59:525–541. https://doi.org/10.1016/j.ces.2003.09.037

    Article  Google Scholar 

  126. Łukaszuk J, Molenda M, Horabik J, Wiącek J (2009) Method of measurement of coefficient of friction between pairs of metallic and organic objects. Acta Agrophys 13:407–418

    Google Scholar 

  127. Nyembwe AM, Cromarty RD (2019) Simulation of the pressure drop across granulated mixtures using a coupled DEM–CFD model. Adv Powder Technol 30:85–97. https://doi.org/10.1016/j.apt.2018.10.010

    Article  Google Scholar 

  128. Sun J, Battaglia F, Subramaniam S (2006) Dynamics and structures of segregation in a dense, vibrating granular bed. Phys Rev E 74:061307. https://doi.org/10.1103/PhysRevE.74.061307

    Article  Google Scholar 

  129. Mousaviraad M, Tekeste MZ, Rosentrater KA (2017) Calibration and validation of a discrete element model of corn using grain flow simulation in a commercial screw grain auger. Trans ASABE 60:1403–1415. https://doi.org/10.13031/trans.12200

    Article  Google Scholar 

  130. Chan EL, Washino K (2018) Coarse grain model for DEM simulation of dense and dynamic particle flow with liquid bridge forces. Chem Eng Res Des 132:1060–1069. https://doi.org/10.1016/j.cherd.2017.12.033

    Article  Google Scholar 

  131. Olaleye AK, Shardt O, Walker GM, Van Den AH (2019) Pneumatic conveying of cohesive dairy powder: experiments and CFD-DEM simulations. Powder Technol. https://doi.org/10.1016/j.powtec.2019.09.046

    Article  Google Scholar 

  132. Sakai M, Takahashi H, Pain CC et al (2012) Study on a large-scale discrete element model for fine particles in a fluidized bed. Adv Powder Technol 23:673–681. https://doi.org/10.1016/j.apt.2011.08.006

    Article  Google Scholar 

  133. Sorace CM, Louge MY, Crozier MD, Law VHC (2009) High apparent adhesion energy in the breakdown of normal restitution for binary impacts of small spheres at low speed. Mech Res Commun 36:364–368. https://doi.org/10.1016/j.mechrescom.2008.10.009

    Article  MATH  Google Scholar 

  134. Althaus TO, Windhab EJ, Scheuble N (2012) Effect of pendular liquid bridges on the flow behavior of wet powders. Powder Technol 217:599–606. https://doi.org/10.1016/j.powtec.2011.11.026

    Article  Google Scholar 

  135. Johnson KL, Kendall K, Roberts AD (1971) Surface charge and the contact of elastic solids. Proceeding R Soc London 324:301–313. https://doi.org/10.1088/0022-3727/6/9/304

    Article  Google Scholar 

  136. Nase ST, Vargas WL, Abatan AA, McCarthy JJ (2001) Discrete characterization tools for cohesive granular material. Powder Technol 116:214–223. https://doi.org/10.1016/S0032-5910(00)00398-3

    Article  Google Scholar 

  137. Favier JF, Abbaspour-Fard MH, Kremmer M, Raji AO (1999) Shape representation of axisymmetrical, non-spherical particles in discrete element simulation using multi-element model particles. Eng Comput 16:467–480. https://doi.org/10.1108/02644409910271894

    Article  MATH  Google Scholar 

  138. Hogu C (1998) Shape representation and contact detection for discrete element simulations of arbitrary geometries. Eng Comput 15:374–390

    Article  Google Scholar 

  139. Zhong W, Yu A, Liu X et al (2016) DEM/CFD-DEM modelling of non-spherical particulate systems: theoretical developments and applications. Powder Technol 302:108–152. https://doi.org/10.1016/j.powtec.2016.07.010

    Article  Google Scholar 

  140. Kureck H, Govender N, Siegmann E et al (2019) Industrial scale simulations of tablet coating using GPU based DEM : a validation study. Chem Eng Sci 202:462–480. https://doi.org/10.1016/j.ces.2019.03.029

    Article  Google Scholar 

  141. ISO 3435 (1977) Continuous mechanical handling equipment classification and symbolization of bulk materials. Geneva: International Organization for Standardization

  142. Zhan Z, Yaoming L, Zhenwei L, Zhiqiang G (2013) DEM simulation and physical testing of rice seed impact against a grain loss sensor. Biosyst Eng 116:410–419. https://doi.org/10.1016/j.biosystemseng.2013.10.002

    Article  Google Scholar 

  143. Athanassiadis AG, Miskin MZ, Kaplan P et al (2014) Particle shape effects on the stress response of granular packings. Soft Matter 10:48–59. https://doi.org/10.1039/c3sm52047a

    Article  Google Scholar 

  144. Kruggel-Emden H, Rickelt S, Wirtz S, Scherer V (2008) A study on the validity of the multi-sphere discrete element method. Powder Technol 188:153–165. https://doi.org/10.1016/j.powtec.2008.04.037

    Article  Google Scholar 

  145. Saeed MK, Siraj MS (2019) Mixing study of non-spherical particles using DEM. Powder Technol 344:617–627. https://doi.org/10.1016/j.powtec.2018.12.057

    Article  Google Scholar 

  146. Markauskas D, Kačianauskas R (2011) Investigation of rice grain flow by multi-sphere particle model with rolling resistance. Granul Matter 13:143–148. https://doi.org/10.1007/s10035-010-0196-5

    Article  Google Scholar 

  147. Wiacek J, Molenda M, Horabik J, Ooi JY (2012) Influence of grain shape and intergranular friction on material behavior in uniaxial compression: experimental and DEM modeling. Powder Technol 217:435–442. https://doi.org/10.1016/j.powtec.2011.10.060

    Article  Google Scholar 

  148. Markauskas D, Kačianauskas R, Džiugys A, Navakas R (2010) Investigation of adequacy of multi-sphere approximation of elliptical particles for DEM simulations. Granul Matter 12:107–123. https://doi.org/10.1007/s10035-009-0158-y

    Article  MATH  Google Scholar 

  149. Ma H, Zhao Y (2017) Modeling of the flow of ellipsoidal particles in a horizontal rotating drum based on DEM simulation. Chem Eng Sci 172:636–651. https://doi.org/10.1016/j.ces.2017.07.017

    Article  Google Scholar 

  150. Zhou Z, Zou R, Pinson D, Yu A (2011) Dynamic simulation of the packing of ellipsoidal particles. Ind Eng Chem Res 50:9787–9798. https://doi.org/10.1021/ie200862n

    Article  Google Scholar 

  151. Luo X, Zhao L, Zhang S et al (2018) Experimental and DEM studies on the distribution of voidage in the random filling bed of ellipsoidal particles. Powder Technol 340:400–410. https://doi.org/10.1016/j.powtec.2018.09.042

    Article  Google Scholar 

  152. Ma H, Zhao Y, Cheng Y (2019) CFD-DEM modeling of rod-like particles in a fl uidized bed with complex geometry. Powder Technol 344:673–683. https://doi.org/10.1016/j.powtec.2018.12.066

    Article  Google Scholar 

  153. Chen H, Zhao S, Zhou X (2019) DEM investigation of angle of repose for super-ellipsoidal particles. Particuology. https://doi.org/10.1016/j.partic.2019.05.005

    Article  Google Scholar 

  154. Zhao Y, Xu L, Umbanhowar PB, Lueptow RM (2019) Discrete element simulation of cylindrical particles using super-ellipsoids. Particuology 46:55–66. https://doi.org/10.1016/j.partic.2018.04.007

    Article  Google Scholar 

  155. Baran O, Eppinger T, Han K (2018) DEM simulation of cylinders and capsules in a fluidized bed. In: 8th world congress on particle technology, Orlando, pp 232–242

  156. Zhong WQ, Zhang Y, Jin B, Zhang M (2009) Discrete element method simulation of cylinder-shaped particle flow in a gas-solid fluidized bed. Chem Eng Technol 32:386–391. https://doi.org/10.1002/ceat.200800516

    Article  Google Scholar 

  157. Wu M, Peters B, Rosemann T, Kruggel-emden H (2019) A forcing fictitious domain method to simulate fluid-particle interaction of particles with super-quadric shape. Powder Technol. https://doi.org/10.1016/j.powtec.2019.09.088

    Article  Google Scholar 

  158. Lu G, Third JR (2012) Critical assessment of two approaches for evaluating contacts between super-quadric shaped particles in DEM simulations. Chem Eng Sci 78:226–235. https://doi.org/10.1016/j.ces.2012.05.041

    Article  Google Scholar 

  159. Wang S, Fan Y, Ji S (2018) Interaction between super-quadric particles and triangular elements and its application to hopper discharge. Powder Technol 339:534–549. https://doi.org/10.1016/j.powtec.2018.08.026

    Article  Google Scholar 

  160. Metzger MJ, Glasser BJ (2013) Simulation of the breakage of bonded agglomerates in a ball mill. Powder Technol 237:286–302. https://doi.org/10.1016/j.powtec.2012.12.006

    Article  Google Scholar 

  161. Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41:1329–1364. https://doi.org/10.1016/j.ijrmms.2004.09.011

    Article  Google Scholar 

  162. Spettl A, Bachstein S, Dosta M et al (2016) Bonded-particle extraction and stochastic modeling of internal agglomerate structures. Adv Powder Technol 27:1761–1774. https://doi.org/10.1016/j.apt.2016.06.007

    Article  Google Scholar 

  163. Park B, Min K, Thompson N, Horsrud P (2018) Three-dimensional bonded-particle discrete element modeling of mechanical behavior of transversely isotropic rock. Int J Rock Mech Min Sci 110:120–132. https://doi.org/10.1016/j.ijrmms.2018.07.018

    Article  Google Scholar 

  164. Govender N, Wilke DN, Pizette P, Abriak N (2018) A study of shape non-uniformity and poly-dispersity in hopper discharge of spherical and polyhedral particle systems using the Blaze-DEM GPU code. Appl Math Comput 319:318–336. https://doi.org/10.1016/j.amc.2017.03.037

    Article  MATH  Google Scholar 

  165. Nezami EG, Hashash YMA, Zhao D, Ghaboussi J (2007) Simulation of front end loader bucket–soil interaction using discrete element method. Int J Numer Anal Methods Geomech 31:1147–1162. https://doi.org/10.1002/nag.594

    Article  MATH  Google Scholar 

  166. Li X, Wang F, Zhang D et al (2019) Fluid-solid interaction simulation for particles and walls of arbitrary polygonal shapes with a coupled LBM-IMB-DEM method. Powder Technol 356:177–192. https://doi.org/10.1016/j.powtec.2019.08.006

    Article  Google Scholar 

  167. Peña AA, Lind PG, Herrmann HJ (2008) Modeling slow deformation of polygonal particles using DEM. Particuology 6:506–514. https://doi.org/10.1016/j.partic.2008.07.009

    Article  Google Scholar 

  168. Fu X, Yao Z, Zhang X (2017) Numerical simulation of polygonal particles moving in incompressible viscous fluids. Particuology 31:140–151. https://doi.org/10.1016/j.partic.2016.05.016

    Article  Google Scholar 

  169. Džiugys A, Peters B (2001) An approach to simulate the motion of spherical and non-spherical fuel particles in combustion chambers. Granul Matter 3:231–265

    Article  Google Scholar 

  170. Locurto GJ, Zhang X, Zakirov V et al (1997) Soybean impacts: experiments and dynamic simulations. Trans ASAE 40:789–794

    Article  Google Scholar 

  171. Xu T, Yu J, Yu Y, Wang Y (2018) A modelling and verification approach for soybean seed particles using the discrete element method. Adv Powder Technol 29:3274–3290. https://doi.org/10.1016/j.apt.2018.09.006

    Article  Google Scholar 

  172. Jiang G, Qiu B (2011) Discrete element method simulation of impact-based measurement of grain mass flow. In: 2011 international conference on computer distributed control and intelligent environmental monitoring. IEEE, Changsha, China, pp 419–422

  173. Coetzee CJ, Els DNJ (2009) Calibration of discrete element parameters and the modelling of silo discharge and bucket filling. Comput Electron Agric 65:198–212. https://doi.org/10.1016/j.compag.2008.10.002

    Article  Google Scholar 

  174. Chung YC, Ooi JY (2008) A study of influence of gravity on bulk behaviour of particulate solid. Particuology 6:467–474. https://doi.org/10.1016/j.partic.2008.07.017

    Article  Google Scholar 

  175. González-Montellano C, Ramírez A, Fuentes JM, Ayuga F (2012) Numerical effects derived from en masse filling of agricultural silos in DEM simulations. Comput Electron Agric 81:113–123. https://doi.org/10.1016/j.compag.2011.11.013

    Article  Google Scholar 

  176. Markauskas D, Ramírez-Gómez Á, Kačianauskas R, Zdancevičius E (2015) Maize grain shape approaches for DEM modelling. Comput Electron Agric 118:247–258. https://doi.org/10.1016/j.compag.2015.09.004

    Article  Google Scholar 

  177. Wiacek J, Molenda M (2011) Moisture-dependent physical properties of rapeseed: experimental and DEM modeling. Int Agrophys 25:59–65

    Google Scholar 

  178. Wojtkowski M, Pecen J, Horabik J, Molenda M (2010) Rapeseed impact against a flat surface: physical testing and DEM simulation with two contact models. Powder Technol 198:61–68. https://doi.org/10.1016/j.powtec.2009.10.015

    Article  Google Scholar 

  179. Molenda M, Horabik J, Łukaszuk J, Wiacek J (2011) Variability of intergranular friction and its role in DEM simulation of direct shear of an assembly of rapeseeds. Int Agrophys 25:361–368

    Google Scholar 

  180. Sarnavi HJ, Noor Mohammadi A, Modares Motlagh A, Rahmani Didar A (2013) Dem model of wheat grains in storage considering the effect of moisture content in direct shear test. Res J Appl Sci Eng Technol 5:829–841. https://doi.org/10.19026/rjaset.5.5029

    Article  Google Scholar 

  181. Iroba KL, Mellmann J, Weigler F et al (2011) Particle velocity profiles and residence time distribution in mixed-flow grain dryers. Granul Matter 13:159–168. https://doi.org/10.1007/s10035-010-0222-7

    Article  Google Scholar 

  182. Mellmann J, Iroba KL, Metzger T et al (2011) Moisture content and residence time distributions in mixed-flow grain dryers. Biosyst Eng 109:297–307. https://doi.org/10.1016/j.biosystemseng.2011.04.010

    Article  Google Scholar 

  183. Patwa A, Ambrose RPK, Casada ME (2016) Discrete element method as an approach to model the wheat milling process. Powder Technol 302:350–356. https://doi.org/10.1016/j.powtec.2016.08.052

    Article  Google Scholar 

  184. He X, Jiao W, Wang C, Cao W (2019) Influence of surface roughness on the pump performance based on computational fluid dynamics. IEEE Access 7:105331–105341. https://doi.org/10.1109/access.2019.2932021

    Article  Google Scholar 

  185. Zhou L, Deshpande K, Zhang X, Agarwal RK (2020) Process simulation of chemical looping combustion using ASPEN plus for a mixture of biomass and coal with various oxygen carriers. Energy 195:116955. https://doi.org/10.1016/j.energy.2020.116955

    Article  Google Scholar 

  186. Devarampally DR (2017) Development of two-way coupled CFD–DEM model for top spray fluid bed granular using star CCM +. The State University of New Jersey, Rutgers

    Google Scholar 

  187. Drew DA (1983) Mathematical modeling of two-phase flow. Annu Rev Fluid Mech 15:261–291. https://doi.org/10.1146/annurev.fl.15.010183.001401

    Article  Google Scholar 

  188. Yang Y, Zhou L, Shi W et al (2020) Interstage difference of pressure pulsation in a three-stage electrical submersible pump. J Pet Sci Eng. https://doi.org/10.1016/j.petrol.2020.107653

    Article  Google Scholar 

  189. ANSYS Fluent Inc. (2009) Turbulence. In: ANSYS I, ANSYS Europe L (eds) Ansys Fluent 12.0 Theory Guide, 12th ed. SAS IP, Inc., Canonsburg, pp 1–58

  190. Launder BE (1972) Lectures in mathematical models of turbulence. Academic Press, London, New York

    MATH  Google Scholar 

  191. Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comput Methods Appl Mech Eng 3:269–289. https://doi.org/10.1016/0045-7825(74)90029-2

    Article  MATH  Google Scholar 

  192. Boysan F, Ayers WH, Swithenbank J (1982) A fundamental mathematical modelling approach to cyclone design. Chem Eng Res Des 60:222–230

    Google Scholar 

  193. Narasimha M, Brennan MS, Holtham PN (2006) Numerical simulation of magnetite segregation in a dense medium cyclone. Miner Eng 19:1034–1047. https://doi.org/10.1016/j.mineng.2006.03.013

    Article  Google Scholar 

  194. Orszag SA, Yakhot V, Flannery WS, Boysan F (1993) Renormalization group modeling and turbulence simulations. In: International conference, Near-wall turbulent flows. Elsevier, Tempe, Arizona, p 1031

  195. Azadi M, Azadi M, Mohebbi A (2010) A CFD study of the effect of cyclone size on its performance parameters. J Hazard Mater 182:835–841. https://doi.org/10.1016/j.jhazmat.2010.06.115

    Article  Google Scholar 

  196. Soe TM, Khaing SY (2017) Comparison of turbulence models for computational fluid dynamics simulation of wind flow on cluster of buildings in mandalay. Int J Sci Res Publ 7:337–350

    Google Scholar 

  197. Gimbun J, Chuah TG, Fakhru’l-Razi A, Choong TSY (2005) The influence of temperature and inlet velocity on cyclone pressure drop: a CFD study. Chem Eng Process 44:7–12. https://doi.org/10.1016/j.cep.2004.03.005

    Article  Google Scholar 

  198. Griffiths WD, Boysan F (1996) Computational fluid dynamics (CFD) and empirical modelling of the performance of a number of cyclone samplers. J Aerosol Sci 27:281–304. https://doi.org/10.1016/0021-8502(95)00549-8

    Article  Google Scholar 

  199. Ma L, Ingham DB, Wen X (2000) Numerical modelling of the fluid and particle penetration through small sampling cyclones. J Aerosol Sci 31:1097–1119. https://doi.org/10.1016/S0021-8502(00)00016-1

    Article  Google Scholar 

  200. Gibson MM, Launder BE (1978) Ground effects on pressure fluctuations in the atmospheric boundary layer. J Fluid Mech 86:491–511. https://doi.org/10.1017/S0022112078001251

    Article  MATH  Google Scholar 

  201. Launder BE, Reece GJ, Rodi W (1975) Progress in the development of a Reynolds-stress turbulence closure. J Fluid Mech 68:537–566. https://doi.org/10.1017/S0022112075001814

    Article  MATH  Google Scholar 

  202. Wan G, Sun G, Xue X, Shi M (2008) Solids concentration simulation of different size particles in a cyclone separator. Powder Technol 183:94–104. https://doi.org/10.1016/j.powtec.2007.11.019

    Article  Google Scholar 

  203. Xiang RB, Lee KW (2005) Numerical study of flow field in cyclones of different height. Chem Eng Process 44:877–883. https://doi.org/10.1016/j.cep.2004.09.006

    Article  Google Scholar 

  204. Gronald G, Derksen JJ (2011) Simulating turbulent swirling flow in a gas cyclone: a comparison of various modeling approaches. Powder Technol 205:160–171. https://doi.org/10.1016/j.powtec.2010.09.007

    Article  Google Scholar 

  205. Parvaz F, Hosseini SH, Elsayed K, Ahmadi G (2020) Influence of the dipleg shape on the performance of gas cyclones. Sep Purif Technol 233:116000. https://doi.org/10.1016/j.seppur.2019.116000

    Article  Google Scholar 

  206. Inc. AF (2001) Modeling Turbulence. In: ANSYS I, ANSYS Europe L (eds) ANSYS Fluent Guide, 12th ed. SAS IP, Inc., Canonsburg, pp 1–102

  207. Houben JJH, Weiss C, Brunnmair E, Pirker S (2016) CFD simulations of pressure drop and velocity field in a cyclone separator with central vortex stabilization rod. J Appl Fluid Mech 9:487–499

    Article  Google Scholar 

  208. Talbi K (2011) An experimental study and a numerical simulation of the turbulent flow under the vortex finder of a cyclone separator an experimental study and a numerical simulation of the turbulent flow under the vortex finder of a cyclone separator. J Appl Fluid Mech 4:69–75

    Google Scholar 

  209. Rotta JC (1962) Turbulent boundary layers in incompressible flow. Prog Aerosp Sci 2:1–95. https://doi.org/10.1016/0376-0421(62)90014-3

    Article  Google Scholar 

  210. Maxey MR, Riley JJ (1983) Equation of motion for a small rigid sphere in a nonuniform flow. Phys Fluids 26:883–889. https://doi.org/10.1063/1.864230

    Article  MATH  Google Scholar 

  211. Casas G, Mukherjee D, Celigueta MA et al (2017) A modular, partitioned, discrete element framework for industrial grain distribution systems with rotating machinery. Comput Part Mech 4:181–198. https://doi.org/10.1007/s40571-015-0089-9

    Article  Google Scholar 

  212. Lun CKK (2000) Numerical simulation of dilute turbulent gas-solid flows. Int J Multiph Flow 26:1707–1736. https://doi.org/10.1016/S0301-9322(99)00106-8

    Article  MATH  Google Scholar 

  213. Oesterlé B, Bui Dinh T (1998) Experiments on the lift of a spinning sphere in a range of intermediate Reynolds numbers. Exp Fluids 25:16–22. https://doi.org/10.1007/s003480050203

    Article  Google Scholar 

  214. Saffman PG (1965) The lift on a small sphere in a slow shear flow. J Fluid Mech 22:385–400. https://doi.org/10.1017/S0022112065000824

    Article  MATH  Google Scholar 

  215. Saffman PG (1968) The lift on a small sphere in a slow shear flow: corrigendum. J Fluid Mech 31:624–624. https://doi.org/10.1017/S0022112068999990

    Article  Google Scholar 

  216. Mei R (1992) An approximate expression for the shear lift force on a spherical particle at finite reynolds number. Int J Multiph Flow 18:145–147. https://doi.org/10.1016/0301-9322(92)90012-6

    Article  MATH  Google Scholar 

  217. Ren B, Zhong W, Chen Y et al (2012) Particuology CFD-DEM simulation of spouting of corn-shaped particles. Particuology 10:562–572. https://doi.org/10.1016/j.partic.2012.03.011

    Article  Google Scholar 

  218. Yuan J, Wu C, Li H et al (2018) Movement rules and screening characteristics of rice-threshed mixture separation through a cylinder sieve. Comput Electron Agric 154:320–329. https://doi.org/10.1016/j.compag.2018.09.012

    Article  Google Scholar 

  219. Karimi H, Dehkordi AM (2015) Prediction of equilibrium mixing state in binary particle spouted beds: effects of solids density and diameter differences, gas velocity, and bed aspect ratio. Adv Powder Technol 26:1371–1382. https://doi.org/10.1016/j.apt.2015.07.013

    Article  Google Scholar 

  220. Wang Z, Teng Y, Liu M (2019) A semi-resolved CFD–DEM approach for particulate flows with kernel based approximation and Hilbert curve based searching strategy. J Comput Phys 384:151–169. https://doi.org/10.1016/j.jcp.2019.01.017

    Article  MathSciNet  MATH  Google Scholar 

  221. Elghobashi S (1994) On predicting particle-laden turbulent flows. Appl Sci Res 52:309–329. https://doi.org/10.1007/BF00936835

    Article  Google Scholar 

  222. Elghobashi S (1991) Particle-laden turbulent flows: direct simulation and closure models. Appl Sci Res 48:301–314. https://doi.org/10.1007/BF02008202

    Article  MATH  Google Scholar 

  223. Zhao H, Zhao Y (2019) CFD–DEM simulation of pneumatic conveying in a horizontal channel. Int J Multiph Flow 118:64–74. https://doi.org/10.1016/j.ijmultiphaseflow.2019.06.003

    Article  Google Scholar 

  224. Elsayed K, Lacor C (2014) Analysis and optimisation of cyclone separators geometry using RANS and LES methodologies. Turbul Interact Notes Numer Fluid Mech Multidiscip Des 125:65–74. https://doi.org/10.1007/978-3-662-43489-5

    Article  Google Scholar 

  225. Potapov A, Chen X, Donohue T, Wheeler C (2013) Computer simulation of airflow around transfer chutes via linked discrete element method: computational fluid dynamics approach. In: 11th international congress on bulk materials storage, Handling and transportation

  226. Ganser GH (1993) A rational approach to drag prediction nonspherical particles. Powder Technol 77:143–152. https://doi.org/10.1016/0032-59109(93)80051-b

    Article  Google Scholar 

  227. ESSS-Rocky (2015) Rocky User Manual, 4.0. Rocky DEM, Inc., Rio de Janeiro, Brazi

  228. Mahajan VV, Nijssen TMJ, Fitzgerald BW, et al (2017) Fluidization of spherocylindrical particles. In: 8th international conference on micromechanics on granular media

  229. Buist KA, Jayaprakash P, Kuipers JAM et al (2017) Magnetic particle tracking for nonspherical particles in a cylindrical fluidized bed. AIChE J 63:5335–5342. https://doi.org/10.1002/aic.15854

    Article  Google Scholar 

  230. Laín S, Sommerfeld M (2008) Euler/Lagrange computations of pneumatic conveying in a horizontal channel with different wall roughness. Powder Technol 184:76–88. https://doi.org/10.1016/j.powtec.2007.08.013

    Article  Google Scholar 

  231. Kuang SB, Yu AB, Zou ZS (2009) Flow regimes in vertical pneumatic conveying. Ind Eng Chem Res 1145:1005–1008. https://doi.org/10.1063/1.3179812

    Article  Google Scholar 

  232. Traoré P, Laurentie JC, Dascalescu L (2015) An efficient 4 way coupling CFD-DEM model for dense gas-solid particulate flows simulations. Comput Fluids 113:65–76. https://doi.org/10.1016/j.compfluid.2014.07.017

    Article  MathSciNet  MATH  Google Scholar 

  233. Carruthers AC, Filippone A (2005) Aerodynamic drag of streamers and flags. J Aircr 42:976–982. https://doi.org/10.2514/1.9754

    Article  Google Scholar 

  234. Gent SP, Gent SP (2009) Computational modeling of multiphase fibrous flows for simulation based engineering. Iowa State University

  235. Schiller L, Naumann AZ (1933) Ueber die grundlegenden Berechnungen bei der Schwerkraftaufbereitung. Ver Deut Ing 77:317–320

    Google Scholar 

  236. Fox RW, Mcdonald’s AL, (2011) Introdution to fluid mechanics, 8th edn. John Wiley and Sons, INC., New York

    Google Scholar 

  237. Liu R, Zhou Z, Xiao R, Yu A (2019) CFD-DEM modelling of mixing of granular materials in multiple jets fluidized beds. Powder Technol. https://doi.org/10.1016/j.powtec.2019.08.002

    Article  Google Scholar 

  238. Dallavalle JM (1948) Micromeritics: the technology of fine particles, 2nd edn. Pitman Publishing Corp, New York

    Google Scholar 

  239. ESSS-Rocky (2016) Particle drag laws implemented in the Rocky DEM–CFD one­way and two­way coupling modules. In: Rocky E (ed) Rocky-Dem Technical Manual, 4.13. Rocky DEM, Inc., Rio de Janeiro, Brazi, pp 1–9

  240. Wen CY, Yu YH (1966) Mechanics of fluidization. Chem Eng Prog Symp Ser 162:100–111

    Google Scholar 

  241. Benzarti S, Mhiri H, Bournot H (2012) Drag models for simulation gas-solid flow in the bubbling fluidized bed of FCC particles. Int J Chem Mol Eng 61:1138–1143

    Google Scholar 

  242. Ergun S (1952) Fluid flow through packed columns. Chem Eng Prog 48:89–94

    Google Scholar 

  243. Knight C, O’Sullivan C, van Wachem B, Dini D (2020) Computing drag and interactions between fluid and polydisperse particles in saturated granular materials. Comput Geotech 117:103210. https://doi.org/10.1016/j.compgeo.2019.103210

    Article  Google Scholar 

  244. Huilin L, Gidaspow D (2003) Hydrodynamics of binary fluidization in a riser: CFD simulation using two granular temperatures. Chem Eng Sci 58:3777–3792. https://doi.org/10.1016/S0009-2509(03)00238-0

    Article  Google Scholar 

  245. Di Felice R (1994) The voidage function for fluid-particle interaction systems. Int J Multiph Flow 20:153–159. https://doi.org/10.1016/0301-9322(94)90011-6

    Article  MATH  Google Scholar 

  246. Wang Q, Melaaen MC, De Silva SR (2001) Investigation and simulation of a cross-flow air classifier. Powder Technol 120:273–280. https://doi.org/10.1016/S0032-5910(01)00282-0

    Article  Google Scholar 

  247. Badretdinov I, Mudarisov S, Lukmanov R et al (2019) Mathematical modeling and research of the work of the grain combine harvester cleaning system. Comput Electron Agric 165:104966. https://doi.org/10.1016/j.compag.2019.104966

    Article  Google Scholar 

  248. Mudarisov S, Khasanov E, Rakhimov Z et al (2017) Specifying two-phase flow in modeling pneumatic systems performance of farm machines specifying two-phase flow in modeling pneumatic systems performance of farm machines. J Mech Eng Res Dev 40:706–715. https://doi.org/10.7508/jmerd.2017.04.018

    Article  Google Scholar 

  249. Li Y, Xu L, Zhou Y et al (2018) Effects of throughput and operating parameters on cleaning performance in air-and-screen cleaning unit: A computational and experimental study. Comput Electron Agric 152:141–148. https://doi.org/10.1016/j.compag.2018.07.019

    Article  Google Scholar 

  250. Enchen J, Zhanfeng S, Zhiyang P, Lijun W (2014) Numerical simulation based on CFD-DEM and experiment of grain moving laws in Inrtia separation chamber. J Agric Mach 45:117–122. https://doi.org/10.6041/j.issn.1000-1298

    Article  Google Scholar 

  251. Balafoutis A, Beck B, Fountas S et al (2017) Precision agriculture technologies positively contributing to GHG emissions sustainability precision agriculture technologies positively contributing to GHG emissions mitigation. Farm Prod Econ Sustain 9:1339. https://doi.org/10.3390/su9081339

    Article  Google Scholar 

  252. Minfeng J, Yongqian D, Hongfeng Y et al (2018) Optimal structure design and performance tests of seed metering device with fluted rollers for precision wheat seeding machine. IFAC Pap OnLine 17:509–514. https://doi.org/10.1016/j.ifacol.2018.08.158

    Article  Google Scholar 

  253. Singh RC, Singh G, Saraswat DC (2005) Optimisation of design and operational parameters of a pneumatic seed metering device for planting cottonseeds. Biosyst Eng 92:429–438. https://doi.org/10.1016/j.biosystemseng.2005.07.002

    Article  Google Scholar 

  254. Jianbo Z, Junfang X, Yong Z, Shun Z (2014) Design and experimental study of the control system for precision seed-metering device. Int J Agric Biol Eng 7:13–18. https://doi.org/10.3965/j.ijabe.20140703.002

    Article  Google Scholar 

  255. Kamgar S, Eslami M, Maharlouie M (2013) Design, development and evaluation of a mechatronic transmission system to improve the performance of a conventional row crop planter. Intl J Agron Plant Prod 4:480–487

    Google Scholar 

  256. Dandan H, Dongxing Z, Li Y et al (2017) EDEM-CFD simulation and experiment of working performance of inside-filling air-blowing seed metering device in maize. Trans Chin Soc Agric Eng 33:23–31

    Google Scholar 

  257. Lei X, Liao Y, Zhang Q et al (2018) Numerical simulation of seed motion characteristics of distribution head for rapeseed and wheat. Comput Electron Agric 150:98–109. https://doi.org/10.1016/j.compag.2018.04.009

    Article  Google Scholar 

  258. Weigler F, Mellmann J (2014) Investigation of grain mass flow in a mixed flow dryer. Particuology 12:33–39. https://doi.org/10.1016/j.partic.2013.04.004

    Article  Google Scholar 

  259. Bacelos MS, Almeida PIF (2011) Modelling of drying kinetic of potatoes taking into account shrinkage. Procedia Food Sci 1:713–721. https://doi.org/10.1016/j.profoo.2011.09.108

    Article  Google Scholar 

  260. Oksanen T (2018) Controlling air flow in recirculating mixed flow batch dryer with double bed mode. Comput Electron Agric 149:133–138. https://doi.org/10.1016/j.compag.2017.07.018

    Article  Google Scholar 

  261. Weigler F, Mellmann J, Franke G, Scaar H (2013) Experimental studies on a newly developed mixed-flow dryer. Dry Technol 31:1736–1743. https://doi.org/10.1080/07373937.2013.806929

    Article  Google Scholar 

  262. Scaar H, Franke G, Weigler F et al (2016) Experimental and numerical study of the airflow distribution in mixed-flow grain dryers. Dry Technol 34:595–607. https://doi.org/10.1080/07373937.2015.1064946

    Article  Google Scholar 

  263. Azmir J, Hou Q, Yu A (2019) CFD-DEM simulation of drying of food grains with particle shrinkage. Powder Technol 343:792–802. https://doi.org/10.1016/j.powtec.2018.11.097

    Article  Google Scholar 

  264. Azmir J, Hou Q, Yu A (2019) CFD-DEM study of the effects of food grain properties on drying and shrinkage in a fluidised bed. Powder Technol. https://doi.org/10.1016/j.powtec.2019.10.021

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 52079058 and 51979138), Nature Science Foundation for Excellent Young Scholars of Jiangsu Province (Grant No. BK20190101), National Key Research and Development Project (Grant No. 2020YFC1512404).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Zhou.

Ethics declarations

Conflict of interest

The authors are not aware of any biases that might be perceived as affecting the objectivity of this review. The authors also declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Emam, M.A., Zhou, L., Shi, W. et al. Theories and Applications of CFD–DEM Coupling Approach for Granular Flow: A Review. Arch Computat Methods Eng 28, 4979–5020 (2021). https://doi.org/10.1007/s11831-021-09568-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-021-09568-9

Navigation