Skip to main content
Log in

Effect of solvents on the morphology of NiCo2O4/graphene nanostructures for electrochemical pseudocapacitor application

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The large internal surface areas and outstanding electrical and mechanical properties of graphene have prompted to blend graphene with NiCo2O4 to fabricate nanostructured NiCo2O4/graphene composites for supercapacitor applications. The use of graphene as blending with NiCo2O4 enhances the specific capacitance and rate capability and improves the cyclic performance when compared to the pristine NiCo2O4 material. Here, we synthesized two different nanostructured morphologies of NiCo2O4 on graphene sheets by solvothermal method. It has been suggested that the morphologies of oxides are greatly influenced by dielectric constant, thermal conductivity, and viscosity of solvents employed during the synthesis. In order to test this concept, we have synthesized nanostructured NiCo2O4 on graphene sheets by facile solvothermal method using N-methyl pyrrolidone and N,N-dimethylformamide solvents with water. We find that mixture of N-methyl pyrrolidone and water solvent favored the formation of nanonet-like NiCo2O4/graphene (NiCoO-net) whereas mixture of N,N-dimethylformamide and water solvent produced microsphere-like NiCo2O4/graphene (NiCoO-sphere). Electrochemical pseudocapacitance behavior of the two NiCo2O4/graphene electrode materials was studied by cyclic voltammetry, chronopotentiometry, and electrochemical impedance spectroscopy techniques. The supercapacitance measurements on NiCoO-net and NiCoO-sphere electrodes showed specific capacitance values of 1060 and 855 F g−1, respectively, at the current density of 1.5 A g−1. The capacitance retention of NiCoO-net electrode is 93 % while that of NiCoO-sphere electrode is 77 % after long-term 5000 charge-discharge cycles at high current density of 10 A g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  2. Chen S, Xing W, Duan J, Hu X, Qiao SZ (2013) Nanostructured morphology control for efficient supercapacitor electrodes. J Mater Chem A 1:2941–2954

    Article  CAS  Google Scholar 

  3. Béguin F, Frackowiak E (2013) Supercapacitors: materials, systems, and applications. Weinheim, Wiley-VCH

    Book  Google Scholar 

  4. Gogotsi Y, Simon P (2011) True performance metrics in electrochemical energy storage. Science 334:917–918

    Article  CAS  Google Scholar 

  5. Xia X, Chao D, Fan Z, Guan C, Cao X, Zhang H (2014) A new type of porous graphite foams and their integrated composites with oxide/polymer core/shell nanowires for supercapacitors: structural design, fabrication, and full supercapacitor demonstrations. Nano Lett 14:1651–1658

    Article  CAS  Google Scholar 

  6. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531

    Article  CAS  Google Scholar 

  7. Pan H, Li J, Feng YP (2010) Carbon nanotubes for supercapacitor. Nanoscale Res Lett 5:654–668

    Article  CAS  Google Scholar 

  8. Li X, Wei B (2013) Supercapacitors based on nanostructured carbon. Nano Energy 2:159–173

    Article  CAS  Google Scholar 

  9. Lu Q, Chen JG, Xiao JQ (2013) Nanostructured electrodes for high-performance pseudocapacitors. Angew Chem Int Ed 52:1882–1889

    Article  CAS  Google Scholar 

  10. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12

    Article  CAS  Google Scholar 

  11. Shi F, Li L, Wang XL, Gu CD, Tu JP (2014) Metal oxide/hydroxide-based materials for supercapacitors. RSC Adv 4:41910–41921

    Article  CAS  Google Scholar 

  12. Rui XH, Tan H, Yan Q (2014) Nanostructured metal sulfides for energy storage. Nanoscale 6:9889–9924

    Article  CAS  Google Scholar 

  13. Djire A, Ajenifujah OT, Sleightholme AES, Rasmussen P, Thompson LT (2015) Effects of surface oxygen on charge storage in high surface area early transition-metal carbides and nitrides. J Power Sources 275:159–166

    Article  CAS  Google Scholar 

  14. Devadas A, Baranton S, Napporn TW, Coutanceau C (2011) Tailoring of RuO2 nanoparticles by microwave assisted “Instant method” for energy storage applications. J Power Sources 196:4044–4053

    Article  CAS  Google Scholar 

  15. Li YF, Li SS, Zhou DL, Wang AJ, Zhang PP, Li CG, Feng JJ (2014) Facile controlled synthesis of MnO2 nanowires for supercapacitors. J Solid State Electrochem 18:2521–2527

    Article  CAS  Google Scholar 

  16. Justin P, Meher SK, Ranga Rao G (2010) Tuning of capacitance behavior of NiO using anionic, cationic, and nonionic surfactants by hydrothermal synthesis. J Phys Chem C 114:5203–5210

    Article  CAS  Google Scholar 

  17. Hou L, Yuan C, Yang L, Shen L, Zhang F, Zhang X (2011) Urchin-like Co3O4 microspherical hierarchical superstructures constructed by one-dimension nanowires toward electrochemical capacitors. RSC Adv 1:1521–1526

    Article  CAS  Google Scholar 

  18. Meher SK, Ranga Rao G (2011) Effect of microwave on the nanowire morphology, optical, magnetic, and pseudocapacitance behavior of Co3O4. J Phys Chem C 115:25543–25556

    Article  CAS  Google Scholar 

  19. Shivakumara S, Penki TR, Munichandraiah N (2014) Preparation and electrochemical performance of porous hematite (α-Fe2O3) nanostructures as supercapacitor electrode material. J Solid State Electrochem 18:1057–1066

    Article  CAS  Google Scholar 

  20. Umeshbabu E, Rajeshkhanna G, Ranga Rao G (2014) Urchin and sheaf-like NiCo2O4 nanostructures: synthesis and electrochemical energy storage application. Int J Hydrog Energy 39:15627–15638

    Article  CAS  Google Scholar 

  21. Jokar E, Irajizad A, , Shahrokhian S (2015) Synthesis and characterization of NiCo2O4 nanorods for preparation of supercapacitor electrodes. J Solid State Electrochem 19:269–274

    Article  CAS  Google Scholar 

  22. Padmanathan N, Selladurai S (2013) Solvothermal synthesis of mesoporous NiCo2O4 spinel oxide nanostructure for high-performance electrochemical capacitor electrode. Ionics 19:1535–1544

    Article  CAS  Google Scholar 

  23. Ding R, Qi L, Wang H (2012) A facile and cost-effective synthesis of mesoporous NiCo2O4 nanoparticles and their capacitive behavior in electrochemical capacitors. J Solid State Electrochem 16:3621–3633

    Article  CAS  Google Scholar 

  24. Kong LB, Lu C, Liu MC, Luo YC, Kang L (2013) Effect of surfactant on the morphology and capacitive performance of porous NiCo2O4. J Solid State Electrochem 17:1463–1471

    Article  CAS  Google Scholar 

  25. Zhang M, Guo S, Zheng L, Zhang G, Hao Z, Kang L, Liu ZH (2013) Preparation of NiMn2O4 with large specific surface area from an epoxide-driven sol–gel process and its capacitance. Electrochim Acta 87:546–553

    Article  CAS  Google Scholar 

  26. Davis M, Gümeci C, Black B, Korzeniewski L, Hope-Weeks C (2012) Tailoring cobalt doped zinc oxide nanocrystals with high capacitance activity: factors affecting structure and surface morphology. RSC Adv 2:2061–2066

    Article  CAS  Google Scholar 

  27. Xu Y, Wang XF, An C, Wang Y, Jiao L, Yuan H (2014) Facile synthesis route of porous MnCo2O4 and CoMn2O4 nanowires and their excellent electrochemical properties in supercapacitors. J Mater Chem A 2:16480–16488

    Article  CAS  Google Scholar 

  28. Zhu M, Meng D, Wang C, Diao G (2013) Facile fabrication of hierarchically porous CuFe2O4 nanospheres with enhanced capacitance property. ACS Appl Mater Interfaces 5:6030–6037

    Article  CAS  Google Scholar 

  29. Yuan CH, Wu HB, Xie Y, Lou XW (2014) Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int Ed 53:1488–1504

    Article  CAS  Google Scholar 

  30. Chen YJ, Zhu J, Qu B, Lu B, Xu Z (2014) Graphene improving lithium-ion battery performance by construction of NiCo2O4/graphene hybrid nanosheet arrays. Nano Energy 3:88–94

    Article  CAS  Google Scholar 

  31. Syedvali P, Rajeshkhanna G, Umeshbabu E, Kiran GU, Ranga Rao G, Justin P (2015) In situ fabrication of graphene decorated microstructured globe artichokes of partial molar nickel cobaltite anchored on a Ni foam as a high-performance supercapacitor electrode. RSC Adv 5:38407–38416

    Article  CAS  Google Scholar 

  32. Wang H, Holt CMB, Li Z, Tan X, Amirkhiz BS, Xu Z, Olsen BC, Stephenson T, Mitlin D (2012) Graphene–nickel cobaltite nanocomposite asymmetrical supercapacitor with commercial level mass loading. Nano Res 5:605–617

    Article  CAS  Google Scholar 

  33. Choi W, Lee JW (2012) Graphene synthesis and applications; Taylor Francis group

  34. Wang L, Wang XH, Xiao XP, Xu FG, Sun YJ, Li Z (2013) Reduced graphene oxide/nickel cobaltite nanoflake composites for high specific capacitance supercapacitors. Electrochim Acta 111:937–945

    Article  CAS  Google Scholar 

  35. Hou J, Shao Y, Ellis MW, Moored RB, Yie B (2011) Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. Phys Chem Chem Phys 13:15384–15402

    Article  CAS  Google Scholar 

  36. Wu ZS, Zhou G, Yin LC, Ren W, Li F, Cheng HM (2012) Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1:107–131

    Article  CAS  Google Scholar 

  37. Xu J, Gu XF, Cao J, Wang W, Chen Z (2012) Nickel oxide/expanded graphite nanocomposite electrodes for supercapacitor application. J Solid State Electrochem 16:2667–2674

    Article  CAS  Google Scholar 

  38. Wang D, Li Y, Wang Q, Wang T (2012) Nanostructured Fe2O3–graphene composite as a novel electrode material for supercapacitors. J Solid State Electrochem 16:2095–2102

    Article  CAS  Google Scholar 

  39. Ahuja P, Sahu V, Ujjain SK, Sharma RK, Singh G (2014) Performance evaluation of asymmetric supercapacitor based on cobalt manganite modified graphene nanoribbons. Electrochim Acta 146:429–436

    Article  CAS  Google Scholar 

  40. Moon IK, Chun KY (2015) Ultra-high pseudocapacitance of mesoporous ZnCo2O4 nanosheets on reduced graphene oxide utilizing a neutral aqueous electrolyte. RSC Adv 5:807–811

    Article  CAS  Google Scholar 

  41. Wang HW, Hu ZA, Chang YQ, Chen YL, Wu HY, Zhang ZY, Yang YY (2011) Design and synthesis of NiCo2O4–reduced graphene oxide composites for high performance supercapacitors. J Mater Chem 21:10504–10511

    Article  CAS  Google Scholar 

  42. Wei Y, Chen S, Su D, Sun B, Zhu JG, Wang G (2014) 3D mesoporous hybrid NiCo2O4@graphene nanoarchitectures as electrode materials for supercapacitors with enhanced performances. J Mater Chem A 2:8103–8109

    Article  CAS  Google Scholar 

  43. Carriazo D, Patiño J, Gutiérrez MC, Ferrer ML, Del Monte F (2013) Microwave-assisted synthesis of NiCo2O4–graphene oxide nanocomposites suitable as electrodes for supercapacitors. RSC Adv 3:13690–13695

    Article  CAS  Google Scholar 

  44. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun ZZ, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814

    Article  CAS  Google Scholar 

  45. Yang W, Gao Z, Ma J, Wang J, Wang B, Liu L (2013) Effects of solvent on the morphology of nanostructured Co3O4 and its application for high-performance supercapacitors. Electrochim Acta 112:378–385

    Article  CAS  Google Scholar 

  46. Wang D, Wang Q, Wang T (2011) Morphology-controllable synthesis of cobalt oxalates and their conversion to mesoporous Co3O4 nanostructures for application in supercapacitors. Inorg Chem 50:6482–6492

    Article  CAS  Google Scholar 

  47. Xiao Y, Lei Y, Zheng BH, Gu L, Wang Y, Xiao D (2015) Rapid microwave-assisted fabrication of 3D cauliflower-like NiCo2S4 architectures for asymmetric supercapacitors. RSC Adv 5:21604–21613

    Article  CAS  Google Scholar 

  48. Yuan CH, Zhang L, Hou L, Panga G, Oh WC (2014) One-step hydrothermal fabrication of strongly coupled Co3O4 nanosheets–reduced graphene oxide for electrochemical capacitors. RSC Adv 4:14408–14413

    Article  CAS  Google Scholar 

  49. Wang C, Xu J, Yuen MF, Zhang J, Li Y, Chen XF, Zhang W (2014) Hierarchical composite electrodes of nickel oxide nanoflake 3D graphene for high-performance pseudocapacitors. Adv Funct Mater 24:6372–6380

    Article  CAS  Google Scholar 

  50. Lu Y, Yan H, Zhang D, Lin J, Xue Y, Li J, Luo Y, Tang C (2014) Hybrid nanonet/nanoflake NiCo2O4 electrodes with an ultrahigh surface area for supercapacitors. J Solid State Electrochem 18:3143–3152

    Article  CAS  Google Scholar 

  51. Yuan CZ, Li JY, Hou L, Lin J, Zhang XG, Xiong S (2013) Polymer-assisted synthesis of a 3D hierarchical porous network-like spinel NiCo2O4 framework towards high-performance electrochemical capacitors. J Mater Chem A 1:11145–11151

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support by IIT Madras to present this work at ICMAT-2015 in Singapore. The fellowships granted by CSIR to Umeshbabu and UGC to Rajeshkhanna are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ranga Rao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umeshbabu, E., Rajeshkhanna, G. & Ranga Rao, G. Effect of solvents on the morphology of NiCo2O4/graphene nanostructures for electrochemical pseudocapacitor application. J Solid State Electrochem 20, 1837–1844 (2016). https://doi.org/10.1007/s10008-015-3022-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-3022-5

Keywords

Navigation