Skip to main content
Log in

3D macroporous Ti3C2Tx MXene/cellulose nanofibre/rGO hybrid aerogel electrode with superior energy density

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Reduced graphene oxide (rGO) and MXene have garnered significant attention due to their exceptional pseudocapacitance and electrical conductivity that are viable in energy storage applications. Nevertheless, the challenge of self-restacking between the 2D material surfaces and the tendency of MXene to oxidise has posed obstacles to their further utilisation. This prompted researchers to use cellulose nanofibre (CNF) as a prospective “bridge” to connect the two materials. This approach has been shown to prevent MXene from oxidising while facilitating GO conversion into rGO via reduction. Consequently, 3D macroporous Ti3C2Tx MXene/cellulose nanofibres/reduced graphene oxide (MCG) aerogels have been successfully prepared. A breakthrough in solving the self-stacking problem and creating a sensibly designed 3D macroporous electrode structure has yielded excellent electrochemical capabilities for MCG aerogel electrodes. Specifically at 1.0 mW cm−2 power density, these electrodes have demonstrated an outstanding performance in 5000 cycles with 79.4% retention rate, favourable areal specific capacitance of 671 mF cm−2 and unparalleled energy density of 60.9 mWh cm−2. Overall, this study offers significant perspectives on the possible uses of 2D materials, especially in terms of adjusting their structure and functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data presented in this study are available on request from the corresponding author.

References

  1. Fan G, Wang Z, Ren H, Liu Y, Fan R (2021) Dielectric dispersion of copper/rutile cermets: dielectric resonance, relaxation, and plasma oscillation. Scripta Mater 190:1–6. https://doi.org/10.1016/j.scriptamat.2020.08.027

    Article  CAS  Google Scholar 

  2. Gogotsi Y, Simon P (2011) True performance metrics in electrochemical energy storage. Science 6058:917–918. https://doi.org/10.1126/science.1213003

    Article  Google Scholar 

  3. Lu X, Yu M, Wang G, Tong Y, Li Y (2014) Flexible solid-state supercapacitors: design, fabrication and applications. Energy Environ Sci 7:2160–2181. https://doi.org/10.1039/c4ee00960f

    Article  Google Scholar 

  4. Yuan H, Wang G, Zhao Y, Liu Y, Wu Y, Zhang Y (2020) A stretchable, asymmetric, coaxial fiber-shaped supercapacitor for wearable electronics. Nano Res 6:1686–1692. https://doi.org/10.1007/s12274-020-2793-x

    Article  Google Scholar 

  5. Zhang J, Seyedin S, Gu Z, Yang W, Wang X, Razal JM (2017) MXene: a potential candidate for yarn supercapacitors. Nanoscale 47:18604–18608. https://doi.org/10.1039/c7nr06619h

    Article  CAS  Google Scholar 

  6. Shekhirev M, Shuck CE, Sarycheva A, Gogotsi Y (2021) Characterization of MXenes at every step, from their precursors to single flakes and assembled films. Prog Mater Sci 120:100757. https://doi.org/10.1016/j.pmatsci.2020.100757

    Article  CAS  Google Scholar 

  7. Hantanasirisakul K, Gogotsi Y (2018) Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Adv Mater 52:1804779. https://doi.org/10.1002/adma.201804779

    Article  CAS  Google Scholar 

  8. Cao WT, Chen FF, Zhu YJ, Zhang YG, Jiang YY, Ma MG, Chen F (2018) Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 5:4583–4593. https://doi.org/10.1021/acsnano.8b00997

    Article  CAS  Google Scholar 

  9. Li K, Liang M, Wang H, Wang X, Huang Y, Coelho J, Pinilla S, Zhang Y, Qi F, Nicolosi V, Xu Y (2020) 3D MXene architectures for efficient energy storage and conversion. Adv Funct Mater 47:2000842. https://doi.org/10.1002/adfm.202000842

    Article  CAS  Google Scholar 

  10. Pang J, Mendes RG, Bachmatiuk A, Zhao L, Ta HQ, Gemming T, Liu H, Liu Z, Rummeli MH (2019) Applications of 2D MXenes in energy conversion and storage systems. Chem Soc Rev 1:72–133. https://doi.org/10.1039/c8cs00324f

    Article  CAS  Google Scholar 

  11. Shang T, Lin Z, Qi C, Liu X, Li P, Tao Y, Wu Z, Li D, Simon P, Yang QH (2019) 3D macroscopic architectures from self-assembled MXene hydrogels. Adv Funct Mater 33:1903960. https://doi.org/10.1002/adfm.201903960

    Article  CAS  Google Scholar 

  12. Pang D, Alhabeb M, Mu X, Dall’Agnese Y, Gogotsi Y, Gao Y (2019) Electrochemical actuators based on two-dimensional Ti3C2Tx (MXene). Nano Lett 10:7443–7448. https://doi.org/10.1021/acs.nanolett.9b03147

    Article  CAS  Google Scholar 

  13. Xie P, Zhang Z, Liu K, Qian L, Dang F, Liu Y, Fan R, Wang X, Dou S (2017) C/SiO2 meta-composite: overcoming the λ/a relationship limitation in metamaterials. Carbon 125:1–8. https://doi.org/10.1016/j.carbon.2017.09.021

    Article  CAS  Google Scholar 

  14. Zhang Z, Chi K, Xiao F, Wang S (2015) Advanced solid-state asymmetric supercapacitors based on 3D graphene/MnO2 and graphene/polypyrrole hybrid architectures. J Mater Chem A 24:12828–12835. https://doi.org/10.1039/c5ta02685g

    Article  Google Scholar 

  15. Cao X, Yin Z, Zhang H (2014) Three-dimensional graphene materials: preparation, structures and application in supercapacitors. Energy Environ Sci 6:1850–1865. https://doi.org/10.1039/c4ee00050a

    Article  CAS  Google Scholar 

  16. Xie X, Zhao MQ, Anasori B, Maleski K, Ren CE, Li J, Byles BW, Pomerantseva E, Wang G, Gogotsi Y (2016) Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy 26:513–523. https://doi.org/10.1016/j.nanoen.2016.06.005

    Article  CAS  Google Scholar 

  17. Du YT, Kan X, Yang F, Gan LY, Schwingenschlogl U (2018) MXene/graphene heterostructures as high-performance electrodes for Li-ion batteries. ACS Appl Mater Interfaces 38:32867–32873. https://doi.org/10.1021/acsami.8b10729

    Article  CAS  Google Scholar 

  18. Chen W, Zhang D, Yang K, Luo M, Yang P, Zhou X (2021) Mxene (Ti3C2Tx)/cellulose nanofiber/porous carbon film as free-standing electrode for ultrathin and flexible supercapacitors. Chem Eng J 413:127524. https://doi.org/10.1016/j.cej.2020.127524

    Article  CAS  Google Scholar 

  19. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 1:228–240. https://doi.org/10.1039/b917103g

    Article  CAS  Google Scholar 

  20. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 35:3906–3924. https://doi.org/10.1002/adma.201001068

    Article  CAS  Google Scholar 

  21. Shao L, Xu J, Ma J, Zhai B, Li Y, Xu R, Ma Z, Zhang G, Wang C, Qiu J (2020) MXene/RGO composite aerogels with light and high-strength for supercapacitor electrode materials. Compos Commun 19:108–113. https://doi.org/10.1016/j.coco.2020.03.006

    Article  Google Scholar 

  22. Xu T, Du H, Liu H, Liu W, Zhang X, Si C, Liu P, Zhang K (2021) Advanced nanocellulose-based composites for flexible functional energy storage devices. Adv Mater 48:2101368. https://doi.org/10.1002/adma.202101368

    Article  CAS  Google Scholar 

  23. Chen W, Yu H, Lee SY, Wei T, Li J, Fan Z (2018) Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chem Soc Rev 8:2837–2872. https://doi.org/10.1039/c7cs00790f

    Article  CAS  Google Scholar 

  24. Yang X, Yao Y, Wang Q, Zhu K, Ye K, Wang G, Cao D, Yan J (2022) 3D macroporous oxidation-resistant Ti3C2Tx MXene hybrid hydrogels for enhanced supercapacitive performances with ultralong cycle life. Adv Funct Mater 10:2109479. https://doi.org/10.1002/adfm.202109479

    Article  CAS  Google Scholar 

  25. Cai C, Wei Z, Deng L, Fu Y (2021) Temperature-invariant superelastic multifunctional MXene aerogels for high-performance photoresponsive supercapacitors and wearable strain sensors. ACS Appl Mater Interfaces 45:54170–54184. https://doi.org/10.1021/acsami.1c16318

    Article  CAS  Google Scholar 

  26. Chen WY, Lai SN, Yen CC, Jiang X, Peroulis D, Stanciu LA (2020) Surface functionalization of Ti3C2Tx MXene with highly reliable superhydrophobic protection for volatile organic compounds sensing. ACS Nano 9:11490–11501. https://doi.org/10.1021/acsnano.0c03896

    Article  CAS  Google Scholar 

  27. Kim J, Yoon Y, Kim SK, Park S, Song W, Myung S, Jung HK, Lee SS, Yoon DH, An KS (2021) Chemically stabilized and functionalized 2D-MXene with deep eutectic solvents as versatile dispersion medium. Adv Funct Mater 13:2008722. https://doi.org/10.1002/adfm.202008722

    Article  CAS  Google Scholar 

  28. Lin Z, Li X, Zhang H, Xu BB, Wasnik P, Li H, Singh MV, Ma Y, Li T, Guo Z (2023) Research progress of MXenes and layered double hydroxides for supercapacitors. Inorg Chem Front 15:4358–4392. https://doi.org/10.1039/d3qi00819c

    Article  CAS  Google Scholar 

  29. Yuan G, Wan T, BaQais A, Mu Y, Cui D, Amin MA, Li X, Xu BB, Zhu X, Algadi H, Li H, Wasnik P, Lu N, Guo Z, Wei H, Cheng B (2023) Boron and fluorine Co-doped laser-induced graphene towards high-performance micro-supercapacitors. Carbon 212:118101. https://doi.org/10.1016/j.carbon.2023.118101

    Article  CAS  Google Scholar 

  30. Fan W, Wang Q, Rong K, Shi Y, Peng W, Li H, Guo Z, Xu BB, Hou H, Algadi H, Ge S (2024) MXene enhanced 3D needled waste denim felt for high-performance flexible supercapacitors. Nano-Micro Lett 16:36. https://doi.org/10.1007/s40820-023-01226-y

    Article  CAS  Google Scholar 

  31. Cheng Y, Zhu W, Lu X, Wang C (2022) Lightweight and flexible MXene/carboxymethyl cellulose aerogel for electromagnetic shielding, energy harvest and self-powered sensing. Nano Energy 98:107229. https://doi.org/10.1016/j.nanoen.2022.107229

    Article  CAS  Google Scholar 

  32. Yang X, Wang Q, Zhu K, Ye K, Wang G, Cao D, Yan J (2021) 3D porous oxidation-resistant MXene/Graphene architectures induced by in situ zinc template toward high-performance supercapacitors. Adv Funct Mater 20:2101087. https://doi.org/10.1002/adfm.202101087

    Article  CAS  Google Scholar 

  33. Yan J, Ren CE, Maleski K, Hatter CB, Anasori B, Urbankowski P, Sarycheva A, Gogotsi Y (2017) Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv Funct Mater 30:1701264. https://doi.org/10.1002/adfm.201701264

    Article  CAS  Google Scholar 

  34. Deng Y, Shang T, Wu Z, Tao Y, Luo C, Liang J, Han D, Lyu R, Qi C, Lv W, Kang F, Yang QH (2019) Fast gelation of Ti3C2Tx MXene initiated by metal ions. Adv Mater 43:1902432. https://doi.org/10.1002/adma.201902432

    Article  CAS  Google Scholar 

  35. Zhao MQ, Ren CE, Ling Z, Lukatskaya MR, Zhang C, Van Aken KL, Barsoum MW, Gogotsi Y (2015) Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv Mater 2:339–345. https://doi.org/10.1002/adma.201404140

    Article  CAS  Google Scholar 

  36. Gao HL, Zhu YB, Mao LB, Wang FC, Luo XS, Liu YY, Lu Y, Pan Z, Ge J, Shen W, Zheng YR, Xu L, Wang LJ, Xu WH, Wu HA, Yu SH (2016) Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure. Nat Commun 7:12920. https://doi.org/10.1038/ncomms12920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bai H, Chen Y, Delattre B, Tomsia AP, Ritchie RO (2015) Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Sci Adv 11:1500849. https://doi.org/10.1126/sciadv.1500849

    Article  CAS  Google Scholar 

  38. Dall’Agnese Y, Lukatskaya MR, Cook KM, Taberna PL, Gogotsi Y, Simon P (2014) High capacitance of surface-modified 2D titanium carbide in acidic electrolyte. Electrochem Commun 48:118–122. https://doi.org/10.1016/j.elecom.2014.09.002

    Article  CAS  Google Scholar 

  39. Ma L, Zhao T, Xu F, You T, Zhang X (2021) A dual utilization strategy of lignosulfonate for MXene asymmetric supercapacitor with high area energy density. Chem Eng J 405:126694. https://doi.org/10.1016/j.cej.2020.126694

    Article  CAS  Google Scholar 

  40. Fan Z, Wang D, Yuan Y, Wang Y, Cheng Z, Liu Y, Xie Z (2020) A lightweight and conductive MXene/graphene hybrid foam for superior electromagnetic interference shielding. Chem Eng J 381:122696. https://doi.org/10.1016/j.cej.2019.122696

    Article  CAS  Google Scholar 

  41. Liu T, Zhang F, Song Y, Li Y (2017) Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. J Mater Chem A 34:17705–17733. https://doi.org/10.1039/c7ta05646j

    Article  CAS  Google Scholar 

  42. Ma Y, Yue Y, Zhang H, Cheng F, Zhao W, Rao J, Luo S, Wang J, Jiang X, Liu Z, Liu N, Gao Y (2018) 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano 4:3209–3216. https://doi.org/10.1021/acsnano.7b06909

    Article  CAS  Google Scholar 

  43. Zhao S, Zhang HB, Luo JQ, Wang QW, Xu B, Hong S, Yu ZZ (2018) Highly electrically conductive three-dimensional Ti3C2TX MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 11:11193–11202. https://doi.org/10.1021/acsnano.8b05739

    Article  CAS  Google Scholar 

  44. Lotfi R, Naguib M, Yilmaz DE, Nanda J, van Duin ACT (2018) A comparative study on the oxidation of two-dimensional Ti3C2 MXene structures in different environments. J Mater Chem A 26:12733–12743. https://doi.org/10.1039/c8ta01468j

    Article  CAS  Google Scholar 

  45. Zhao X, Vashisth A, Prehn E, Sun W, Shah S, Habib T, Chen Y, Tan Z, Lutkenhaus J, Radovic M, Green MJ (2019) Antioxidants unlock shelf-stable Ti3C2TX (MXene) nanosheet dispersions. Matter 2:513–526. https://doi.org/10.1016/j.matt.2019.05.020

    Article  Google Scholar 

  46. Hussain A, Li J, Wang J, Xue F, Chen Y, Bin Aftab T, Li D (2018) Hybrid monolith of graphene/TEMPO-oxidized cellulose nanofiber as mechanically robust, highly functional, and recyclable adsorbent of methylene blue dye. J Nanomater 2018:5963982. https://doi.org/10.1155/2018/5963982

    Article  CAS  Google Scholar 

  47. Maiti S, Jayaramudu J, Das K, Reddy SM, Sadiku R, Ray SS, Liu D (2013) Preparation and characterization of nano-cellulose with new shape from different precursor. Carbohydr Polym 1:562–567. https://doi.org/10.1016/j.carbpol.2013.06.029

    Article  CAS  Google Scholar 

  48. Liu YE, Zhang MG, Gao YN, Guo J (2022) Regulate the reaction kinetic rate of lithium-sulfur battery by rational designing of TEMPO-oxidized cellulose nanofibers/rGO porous aerogel with monolayer MXene coating. J Alloys Compd 898:162821. https://doi.org/10.1016/j.jallcom.2021.162821

    Article  CAS  Google Scholar 

  49. Wang M, Jin F, Zhang X, Wang J, Huang S, Zhang X, Mu S, Zhao Y, Zhao Y (2017) Multihierarchical structure of hybridized phosphates anchored on reduced graphene oxide for high power hybrid energy storage devices. Acs Sustain Chem Eng 7:5679–5685. https://doi.org/10.1021/acssuschemeng.7b00131

    Article  CAS  Google Scholar 

  50. Brousse T, Belanger D, Long JW (2015) To be or not to be pseudocapacitive ? J Electrochem Soc 5:A5185–A5189. https://doi.org/10.1149/2.0201505jes

    Article  CAS  Google Scholar 

  51. Fleischmann S, Mitchell JB, Wang R, Zhan C, Jiang DE, Presser V, Augustyn V (2020) Pseudocapacitance: from fundamental understanding to high power energy storage materials. Chem Rev 14:6738–6782. https://doi.org/10.1021/acs.chemrev.0c00170

    Article  CAS  Google Scholar 

  52. Lv Y, Li L, Zhou Y, Yu M, Wang J, Liu J, Zhou J, Fan Z, Shao Z (2017) A cellulose-based hybrid 2D material aerogel for a flexible all-solid-state supercapacitor with high specific capacitance. Rsc Adv 69:43512–43520. https://doi.org/10.1021/10.1039/c7ra07908g

    Article  Google Scholar 

  53. Zhang Y, Shang Z, Shen M, Chowdhury SP, Ignaszak A, Sun S, Ni Y (2019) Cellulose nanofibers/reduced graphene oxide/polypyrrole aerogel electrodes for high-capacitance flexible all-solid-state supercapacitors. Acs Sustain Chem Eng 13:11175–11185. https://doi.org/10.1021/acssuschemeng.9b00321

    Article  CAS  Google Scholar 

  54. Sumboja A, Foo CY, Wang X, Lee PS (2013) Large areal mass, flexible and free-standing reduced graphene oxide/manganese dioxide paper for asymmetric supercapacitor device. Adv Mater 20:2809–2815. https://doi.org/10.1002/adma.201205064

    Article  CAS  Google Scholar 

  55. Guo Y, Huang H, Zhao Y, Li C, Cong T, Zhang H, Wen N, Fan Z, Pan L (2022) Collaboratively intercalated 1D/3D carbon nanoarchitectures in rGO-based aerogel for supercapacitor electrodes with superior capacitance retention. Appl Surf Sci 596:153566. https://doi.org/10.1016/j.apsusc.2022.153566

    Article  CAS  Google Scholar 

  56. Hao Y, Leng Z, Yu C, Xie P, Zhou L, Li Y, Liang G, Li X, Liu C (2023) Ultra-lightweight hollow bowl-like carbon as microwave absorber owning broad band and low filler loading. Carbon 212:118156. https://doi.org/10.1016/j.carbon.2023.118156

    Article  CAS  Google Scholar 

  57. Fan G, Wang Z, Sun K, Liu Y, Fan R (2021) Doped ceramics of indium oxides for negative permittivity materials in MHz-kHz frequency regions. J Mater Sci Technol 61:125–131

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The support provided by the Advanced Analysis and Testing Center of Nanjing Forestry University is gratefully acknowledged by the authors.

Funding

This work was supported by the National Natural Science Foundation of China (32201491, 32101444), the Young Elite Scientists Sponsorship Program by CAST (2023QNRC001), the Major Projects of Natural Science Foundation of Jiangsu (18KJA220002), and the Special Program of the China Postdoctoral Science Foundation (2017T100313).

Author information

Authors and Affiliations

Authors

Contributions

Xiaoyu Bi and Yang Shi wrote the main manuscript text. Xiaoyu Bi and Yang Shi prepared all the figures. Shengbo Ge, Ben Bin Xu and Ximin He edited the main manuscript text. Shengbo Ge, Xia Li and Runzhou Huang revised and supported funding. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Shengbo Ge, Xia Li or Runzhou Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 32428 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, X., Shi, Y., Ge, S. et al. 3D macroporous Ti3C2Tx MXene/cellulose nanofibre/rGO hybrid aerogel electrode with superior energy density. Adv Compos Hybrid Mater 7, 65 (2024). https://doi.org/10.1007/s42114-024-00877-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-024-00877-8

Keywords

Navigation