Skip to main content
Log in

Preparation and electrochemical performance of porous hematite (α-Fe2O3) nanostructures as supercapacitor electrode material

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Porous α-Fe2O3 nanostructures have been synthesized by sol–gel route. The effect of preparation temperature on the morphology, structure, and electrochemical stability upon cycling has been studied for supercapacitor application. The discharge capacitance of α-Fe2O3 prepared at 300 °C is 193 F g−1, when the electrodes are cycled in 0.5 M Na2SO3 at a specific current of 1 A g−1. The capacitance retention after 1,000 cycles is about 92 % of the initial capacitance at a current density of 2 A g−1. The high discharge capacitance as well as stability of α-Fe2O3 electrodes is attributed to large surface area and porosity of the material. There is a decrease in specific capacitance (SC) on increasing the preparation temperature. As iron oxides are inexpensive, the synthetic route adopted for α-Fe2O3 in the present study is convenient and the SC is high with good cycling stability, the porous α-Fe2O3 is a potential material for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Arico AS, Bruce PG, Scrosati B, Tarascon JM, Schalkwijk WV (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377

    Article  CAS  Google Scholar 

  2. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  3. Zhang J, Zhao XS (2012) On the configuration of supercapacitors for maximizing electrochemical performance. ChemSusChem 5:818–841

    Article  CAS  Google Scholar 

  4. Hall PJ, Mirzaeian M, Fletcher SI, Sillars FB, Rennie AJR, Shitta GOB, Wilson G, Cruden A, Carter R (2010) Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy Environ Sci 3:1238–1251

    Article  CAS  Google Scholar 

  5. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531

    Article  CAS  Google Scholar 

  6. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–827

    Article  CAS  Google Scholar 

  7. Li C, Bai H, Shi G (2009) Conducting polymer nanomaterials: electrosynthesis and applications. Chem Soc Rev 38:2397–2409

    Article  CAS  Google Scholar 

  8. Cottineau T, Toupin M, Delahaye T, Brousse T, Belanger D (2006) Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors. Appl Phys A 82:599–606

    Article  CAS  Google Scholar 

  9. Hu CC, Chang KH, Lin MC, Wu YT (2006) Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett 6:2690–2695

    Article  CAS  Google Scholar 

  10. Yuan C, Zhang X, Su L, Gao B, Shen L (2009) Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors. J Mater Chem 19:5772–5777

    Article  CAS  Google Scholar 

  11. Jiang H, Zhao T, Li C, Ma J (2011) Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors. J Mater Chem 21:3818–3823

    Article  CAS  Google Scholar 

  12. Xiong S, Yuan C, Zhang X, Qian Y (2011) Mesoporous NiO with various hierarchical nanostructures by quasi-nanotubes/nanowires/nanorods self-assembly: controllable preparation and application in supercapacitors. CrystEngComm 13:626–632

    Article  CAS  Google Scholar 

  13. Rakhi RB, Chen W, Cha D, Alshareef HN (2012) Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. Nano Lett 12:2559–2567

    Article  CAS  Google Scholar 

  14. Xia X, Tu J, Zhang Y, Mai Y, Wang X, Gu C, Zhao X (2012) Freestanding Co3O4 nanowire array for high performance supercapacitors. RSC Adv 2:1835–1841

    Article  CAS  Google Scholar 

  15. Pang H, Gao F, Chen Q, Liu R, Lu Q (2012) Dendrite-like Co3O4 nanostructure and its applications in sensors, supercapacitors and catalysis. Dalton Trans 41:5862–5868

    Article  CAS  Google Scholar 

  16. Devaraj S, Munichandraiah N (2008) Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J Phys Chem C 112:4406–4417

    Article  CAS  Google Scholar 

  17. Ragupathy P, Park DH, Campet G, Vasan HN, Hwang SJ, Choy JH, Munichandraiah N (2009) Remarkable capacity retention of nanostructured manganese Oxide upon cycling as an electrode material for supercapacitor. J Phys Chem C 113:6303–6309

    Article  CAS  Google Scholar 

  18. Wu NL, Wang SY, Han CY, Wu DS, Shiue LR (2003) Electrochemical capacitor of magnetite in aqueous electrolytes. J Power Sources 113:173–178

    Article  CAS  Google Scholar 

  19. Wang SY, Wu NL (2003) Operating characteristics of aqueous magnetite electrochemical capacitors. J Appl Electrochem 33:345–348

    Article  CAS  Google Scholar 

  20. Pang SC, Khoh WH, Chin SF (2010) Nanoparticulate magnetite thin films as electrode materials for the fabrication of electrochemical capacitors. J Mater Sci 45:5598–5604

    Article  CAS  Google Scholar 

  21. Wang SY, Ho KC, Kuo SL, Wu NL (2006) Investigation on Capacitance Mechanisms of Fe3O4 Electrochemical Capacitors. J Electrochem Soc 153:A75–A80

    Article  CAS  Google Scholar 

  22. Chen J, Huang K, Liu S (2009) Hydrothermal preparation of octadecahedron Fe3O4 thin film for use in an electrochemicalsupercapacitor. Electrochim Acta 55:1–5

    Google Scholar 

  23. Sun H, Chen B, Jiao X, Jiang Z, Qin Z, Chen D (2012) Solvothermal synthesis of tunable electroactive magnetite nanorods by controlling the side reaction. J Phys Chem C 116:5476–5481

    Article  CAS  Google Scholar 

  24. Nagarajan N, Zhitomirsky I (2006) Cathodic electrosynthesis of iron oxide films for electrochemical supercapacitors. J Appl Electrochem 36:1399–1405

    Article  CAS  Google Scholar 

  25. Wu MS, Lee RH (2009) Electrochemical growth of iron Oxide thin films with nanorods and nanosheets for capacitors. J Electrochem Soc 156:A737–A743

    Article  CAS  Google Scholar 

  26. Wu MS, Lee RH, Jow JJ, Yang WD, Hsieh CY, Weng BJ (2009) Nanostructured iron oxide films prepared by electrochemical method for electrochemical capacitors. Electrochem Solid-State Lett 12:A1–A4

    Article  CAS  Google Scholar 

  27. Wang D, Wang Q, Wang T (2011) Controlled synthesis of mesoporous hematite nanostructures and their application as electrochemical capacitor electrodes. Nanotechnology 22:135604–135615

    Article  Google Scholar 

  28. Xie K, Li J, Lai Y, Lu W, Zhang Z, Liu Y, Zhou L, Huang H (2011) Highly ordered iron oxide nanotube arrays as electrodes for electrochemical energy storage. Electrochem Commun 13:657–660

    Article  CAS  Google Scholar 

  29. Shivakumara S, Penki TR, Munichandraiah N (2013) Synthesis and characterization of porous flowerlike α-Fe2O3 nanostructures for supercapacitor application. ECS Electrochem Lett 2:A60–A62

    Article  CAS  Google Scholar 

  30. Reddy MV, Yu T, Sow CH, Shen ZX, Lim CT, Rao GVS, Chowdari BVR (2007) α-Fe2O3 nanoflakes as an anode material for Li-ion batteries. Adv Funct Mater 17:2792–2799

    Article  CAS  Google Scholar 

  31. Yao X, Tang C, Yuan G, Cui P, Xu X, Liu Z (2011) Porous hematite (α-Fe2O3) nanorods as an anode material with enhanced rate capability in lithium-ion batteries. Electrochem Commun 13:1439–1442

    Article  CAS  Google Scholar 

  32. Wang Z, Luan D, Madhavi S, Li CM, Lou XW (2011) α-Fe2O3 nanotubes with superior lithium storage capability. Chem Commun 47:8061–8063

    Article  CAS  Google Scholar 

  33. Lin YM, Abel PR, Heller A, Mullins CB (2011) α-Fe2O3 nanorods as anode material for lithium ion batteries. J Phys Chem Lett 2:2885–2891

    Article  CAS  Google Scholar 

  34. Wang Y, Cao J, Wang S, Guo X, Zhang J, Xia H, Zhang S, Wu S (2008) Facile synthesis of porous α-Fe2O3 nanorods and their application in ethanol sensors. J Phys Chem C 112:17804–17808

    Article  CAS  Google Scholar 

  35. Hao Q, Liu S, Yin X, Du Z, Zhang M, Li L, Wang Y, Wang T, Li Q (2011) Flexible morphology-controlled synthesis of mesoporous hierarchical α-Fe2O3 architectures and their gas-sensing properties. CrystEngComm 13:806–812

    Article  CAS  Google Scholar 

  36. Hermanek M, Zboril R, Medrik N, Pechousek J, Gregor C (2007) Catalytic efficiency of iron (III) oxides in decomposition of hydrogen peroxide: competition between the surface area and crystallinity of nanoparticles. J Am Chem Soc 129:10929–10936

    Article  CAS  Google Scholar 

  37. Zhang G, Liu M (1999) Preparation of nanostructured tin oxide using a sol–gel process based on tin tetrachloride and ethylene glycol. J Mater Sci 34:3213–3219

    Article  CAS  Google Scholar 

  38. Wang W, Howe JY, Gu B (2008) Structure and morphology evolution of hematite (α-Fe2O3) nanoparticles in forced hydrolysis of ferric chloride. J Phys Chem C 112:9203–9208

    Article  CAS  Google Scholar 

  39. Dong W, Wu S, Chen D, Jiang X, Zhu C (2000) Preparation of α-Fe2O3 nanoparticles by sol–gel process with inorganic iron salt. Chem Lett 5:496–497

    Article  Google Scholar 

  40. Woo K, Lee HJ, Ahn JP, Park YS (2003) Sol–gel mediated synthesis of Fe2O3 nanorods. Adv Mater 20:1761–1764

    Article  Google Scholar 

  41. Brunauer S, Deming L, Deming W, Teller E (1940) On a theory of the van der waals adsorption of gases. J Am Chem Soc 62:1723–1732

    Article  CAS  Google Scholar 

  42. Reddy RN, Reddy RG (2006) Porous structured vanadium oxide electrode material for electrochemical capacitors. J Power Sources 156:700–704

    Article  CAS  Google Scholar 

Download references

Acknowledgments

S S and T R P acknowledge the financial support from the University Grant Commission (UGC), Government of India, under Dr. D.S. Kothari fellowship program [Ref. No. F.4-2/2006(BSR)/13-626/2012(BSR)] and senior research fellowship, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Shivakumara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shivakumara, S., Penki, T.R. & Munichandraiah, N. Preparation and electrochemical performance of porous hematite (α-Fe2O3) nanostructures as supercapacitor electrode material. J Solid State Electrochem 18, 1057–1066 (2014). https://doi.org/10.1007/s10008-013-2355-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2355-1

Keywords

Navigation