Skip to main content

Advertisement

Log in

Review of carbon-based electrode materials for supercapacitor energy storage

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In today’s nanoscale regime, energy storage is becoming the primary focus for majority of the world’s and scientific community power. Supercapacitor exhibiting high power density has emerged out as the most promising potential for facilitating the major developments in energy storage. In recent years, the advent of different organic and inorganic nanostructured materials like nano carbons, metal oxides, nanosheets of graphene, and conducting polymers has enabled high-performance-fabricated devices. A review of different carbon-based materials used in the fabrication of electrodes for electrochemical capacitors is presented in this paper. Along with materials used, a brief overview of different types of supercapacitors depending on charge storage mechanism is also been discussed. Materials summary including applications have been provided through the exhaustive analysis of the literature. Keeping nano-architecture electrodes in view, a summary of different technologies considering the integration of metal oxide into carbon nanofibers, carbon fiber papers, graphene/reduced graphene oxide, and SWCNTs/MWCNTS has been presented in this work. The specific capacitance in the range of 40–300 F/g had been reported in the literature for the EDLC (electric double-layer capacitors) supercapacitors. In contrast to this, carbon nanomaterials-based metal-oxides supercapacitors (CNMO-SC) have emerged as the new promising candidate which possess large specific capacitance (> 100 F/g), high energy density, and cost effectiveness. Hence, a review of certain types of carbon nanomaterials has also been reported here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Convay BE (1999) Electrochemical supercapacitors, scientific fundamentals and technological applications. Plenum, New York. https://doi.org/10.1007/978-1-4757-3058-6

    Book  Google Scholar 

  2. Burke A (2000) J Power Sources 91:37. https://doi.org/10.1016/S0378-7753(00)00485-7

    Article  CAS  Google Scholar 

  3. Zhang LL, Zhao XS (2000) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520. https://doi.org/10.1039/b813846j

    Article  CAS  Google Scholar 

  4. Dulyaseree P, Yordsri V, Wongwiriyapan W (2016) Effects of microwave and oxygen plasma treatments on capacitive characteristics of supercapacitor based on multiwalled carbon nanotubes. Jpn J Appl Phys 55(2):02BD05. https://doi.org/10.7567/JJAP.55.02BD05

    Article  CAS  Google Scholar 

  5. Frackowiak E, Delpeux S, Jurewicz K, Szostak K, Cazorla-Amoros D, B’eguin F (2002) Enhanced capacitance of carbon nanotubes through chemical activation. Chem Phys Lett 361(1–2):35–41. https://doi.org/10.1016/S0009-2614(02)00684-X

    Article  CAS  Google Scholar 

  6. Ambade RB, Ambade SB, Shrestha NK, Salunkhe RR, Lee W, Bagde SS, Kim JH, Stadler FJ, Yamauchi Y, Lee S-H (2017) Controlled growth of polythiophene nanofibers in TiO2 nanotube arrays for supercapacitor applications. J Mater Chem A 5:172. https://doi.org/10.1039/c6ta08038c

    Article  CAS  Google Scholar 

  7. Hassan M, Reddy KR, Haque E, Faisal SN, Ghasemi S (2014) Hierarchical assembly of graphene/polyaniline nanostructures to synthesize free-standing supercapacitor electrode. Compos Sci Technol 98:1–8. https://doi.org/10.1016/j.compscitech.2014.04.007

    Article  CAS  Google Scholar 

  8. Reddy KR, Sin BC, Yoo CH, Park W, Ryu KS, Lee J-S, Sohn D, Lee Y (2008) A new one-step synthesis method for coating multi-walled carbon nanotubes with cuprous oxide nanoparticles. Scr Mater 58:1010–1013. https://doi.org/10.1016/j.scriptamat.2008.01.047

    Article  CAS  Google Scholar 

  9. Xiao X, Wang G, Zhang M, Wang Z, Zhao R, Wang Y (2018) Electrochemical performance of mesoporous ZnCo2O4 nanosheets as an electrode material for supercapacitor. Ionics 24:2435. https://doi.org/10.1007/s11581-017-2354-9

    Article  CAS  Google Scholar 

  10. Winter M, Brodd RJ (2004) What are batteries, fuel cells and supercapacitors? Chem Rev 104:4245–4269. https://doi.org/10.1021/cr020730k

    Article  CAS  Google Scholar 

  11. Bard AJ, Faulkner LR (2013) Electrochemical methods - fundamentals and applications, 2nd edn. John Wiley & Sons, New York ISBN: 978—471-0437-0

    Google Scholar 

  12. Reddya KR, Sina BC, Ryua KS, Nohb J, Leea Y (2009) In situ self-organization of carbon black–polyaniline composites from nanospheres to nanorods: synthesis, morphology, structure and electrical conductivity. Synth Met 159(2009):1934–1939. https://doi.org/10.1016/j.synthmet.2009.06.018

    Article  CAS  Google Scholar 

  13. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531. https://doi.org/10.1039/b813846j

    Article  CAS  PubMed  Google Scholar 

  14. Zhang H, Lv X, Li Y, Wang Y, Li J (2009) P25-Graphene composite as a high performance photo catalyst. ACS Nano 4:380–386. https://doi.org/10.1021/nn901221k

    Article  CAS  Google Scholar 

  15. Gouy G (1910) J Phys Chem B 4:457

    Google Scholar 

  16. Chapman DL (1913) Philos Mag 6:475

    Article  Google Scholar 

  17. Endo M, Takeda T, Kim Y, Koshiba K, Ishii K (2001) High power electric double layer capacitor (EDLC’s); from operating principle to pore size control in advanced activatedcarbons. CarbonScience 1(3):117–128 URL 〈http://carbonlett.org/Upload/files/CARBONLETT/117–128.pdf

    Google Scholar 

  18. Stern OZ (1924) Electrochemistry 30:508. https://doi.org/10.1039/b813846j

    Article  CAS  Google Scholar 

  19. Sharma P, Bhatti T (2010) A review on electrochemical double-layer capacitors. Energy Convers Manag 51(12):2901–2912. https://doi.org/10.1016/j.enconman.2010.06.031

  20. Barbieri O, Hahn M, Herzog A, Kötz R (2005) Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon 43(6):1303–1310. https://doi.org/10.1016/j.carbon.2005.01.001

    Article  CAS  Google Scholar 

  21. Qu D, Shi H (1998) Studies of activated carbons used in double-layer capacitors. J Power Sources 74(1):99–107. https://doi.org/10.1016/S0378-7753(98)00038-X

    Article  CAS  Google Scholar 

  22. Gamby J, Taberna P, Simon P, Fauvarque J, Chesneau M (2001) Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J Power Sources 101(1):109–116. https://doi.org/10.1016/S0378-7753(01)00707-8

    Article  CAS  Google Scholar 

  23. Shi H (1996) Activated carbons and double layer capacitance. Electrochim Acta 41(10):1633–1639. https://doi.org/10.1016/0013-4686(95)00416-5

    Article  CAS  Google Scholar 

  24. Qu D (2002) Studies of the activated carbons used in double-layer supercapacitors. J Power Sources 109(2):403–411. https://doi.org/10.1016/S0378-7753(02)00108-8

    Article  CAS  Google Scholar 

  25. Kim Y, Horie Y, Ozaki S, Matsuzawa Y, Suezaki H, Kim C et al (2004) Correlation between the pore and solvated ion size on capacitance uptake of PVDC-based carbons. Carbon 42(8–9):1491–1500. https://doi.org/10.1016/j.carbon.2004.01.049

    Article  CAS  Google Scholar 

  26. Huang J, Sumpter BG, Meunier V (2008a) Theoretical model for nanoporous carbon supercapacitors. Angew Chem Int Ed 47:520–524. https://doi.org/10.1002/ange.200703864

    Article  CAS  Google Scholar 

  27. Huang J, Sumpter BG, Meunier V (2008b) A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes. Chem Eur J 14:6614–6626

    Article  CAS  Google Scholar 

  28. Huang J, Sumpter B, Meunier V (2008) Theoretical model for nanoporous carbon supercapacitors. Angew Chem 120(3):530–534. https://doi.org/10.1002/ange.200703864

    Article  Google Scholar 

  29. Feng G, Qiao R, Huang J, Sumpter BG, Meunier V (2010) Ion distribution in electrified micropores and its role in the anomalous enhancement of capacitance. ACS Nano 4(4):2382–2390. https://doi.org/10.1021/nn100126w

    Article  CAS  PubMed  Google Scholar 

  30. Frackowiak E (2007) Carbon materials for supercapacitor application. Phys Chem Chem Phys 9:1774–1785

    Article  CAS  Google Scholar 

  31. Chen T, Dai L (2013) Carbon nanomaterials for high performance supercapacitors. Mater Today 16(7/8):272–280. https://doi.org/10.1016/j.mattod.2013.07.002

    Article  CAS  Google Scholar 

  32. Xia JL, Chen F, Li JH, Tao NJ (2009) Measurement of the quantum capacitance of graphene. Nat Nanotechnol 4:505–509. https://doi.org/10.1038/nnano.2009.177

    Article  CAS  PubMed  Google Scholar 

  33. Booth TJ, Blake P, Nair RR, Jiang D, Hill EW, Bangert U et al (2008) Macroscopic graphene membranes and their extraordinary stiffness. Nano Lett 8:2442–2446. https://doi.org/10.1021/nl801412y

    Article  CAS  PubMed  Google Scholar 

  34. Lee C, Wei XD, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–387. https://doi.org/10.1126/science.1157996

    Article  CAS  PubMed  Google Scholar 

  35. Wu Z-S, Zhou G, Yin L-C, Ren W, Li F, Cheng H-M (2012) Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1(1):107–131. https://doi.org/10.1016/j.nanoen.2011.11.001

    Article  CAS  Google Scholar 

  36. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, al e (2004) Electric field effect tin atomically thin carbon films. Science 306(5696):666–669. https://doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  37. Liang JJ, Huang Y, Zhang L, Wang Y, Ma YF, Guo TY, Chen Y (2009) Molecular level dispersion of graphene into poly (vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater 19:2297–2302. https://doi.org/10.1002/adfm.200801776

    Article  CAS  Google Scholar 

  38. Huang X, Qi XY, Boey F, Zhang H (2012) Graphene-based composites. Chem Soc Rev 41:666–686. https://doi.org/10.1039/C1CS15078B

    Article  CAS  PubMed  Google Scholar 

  39. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710. https://doi.org/10.1038/nature07719

    Article  CAS  PubMed  Google Scholar 

  40. He QY, Wu SX, Gao S, Cao XH, Yin ZY, Li H et al (2010) Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes. ACS Nano 4:5263–5268. https://doi.org/10.1021/nn1015874

    Article  CAS  PubMed  Google Scholar 

  41. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI et al (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6:652–655. https://doi.org/10.1038/nmat1967

    Article  CAS  Google Scholar 

  42. He QY, Sudibya HG, Yin ZY, Wu SX, Li H, Boey F et al (2010) Centimeterlong and large-scale micropatterns of reduced graphene oxide films: fabrication and sensing applications. ACS Nano 4:3201–3208. https://doi.org/10.1021/nn100780v

    Article  CAS  PubMed  Google Scholar 

  43. Liang JJ, Xu YF, Huang Y, Zhang L, Wang Y, Ma YF et al (2009) Infraredtriggered actuators from graphene-based nanocomposites. J Phys Chem C 113:9921–9927. https://doi.org/10.1021/jp901284d

    Article  CAS  Google Scholar 

  44. Park S, An J, Suk JW, Ruoff RS (2010) Graphene-based actuators. Small 2010;6(2):210–212. URL 〈http://pubs.acs.org/doi/abs/10.1021/nl802558y

  45. Xie XJ, Qu LT, Zhou C, Li Y, Zhu J, Bai H et al (2010) An asymmetrically surface-modified graphene film electrochemical actuator. ACS Nano 4:6050–6054. https://doi.org/10.1021/nn101563x

    Article  CAS  PubMed  Google Scholar 

  46. Liang JJ, Huang Y, Oh J, Kozlov M, Sui D, Fang SL et al (2011) Electromechanical actuators based on graphene and graphene/Fe3O4 hybrid paper. Adv Funct Mater 21:3778–3784. https://doi.org/10.1002/adfm.201101072

    Article  CAS  Google Scholar 

  47. Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y (2008) Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2:463–470. https://doi.org/10.1021/nn700375n

    Article  CAS  Google Scholar 

  48. Brownson DAC, Kampouris DK, Banks CE (2011) J Power Sources 196:4873. https://doi.org/10.1016/j.jpowsour.2011.02.022

    Article  CAS  Google Scholar 

  49. Pumera M (2010) Graphene-based nanomaterials and their electrochemistry. Chem Soc Rev 39:4146–4157. https://doi.org/10.1039/C002690P

    Article  CAS  PubMed  Google Scholar 

  50. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339. https://doi.org/10.1021/ja01539a017

    Article  CAS  Google Scholar 

  51. Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (2009) Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater 11:771–778. https://doi.org/10.1021/cm981085u.

    Article  Google Scholar 

  52. Park S, Ruoff RS Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224. https://doi.org/10.3390/lubricants2030137

  53. Matsumoto H, Imaizumi S, Konosu Y, Ashizawa M, Minagawa M, Tanioka A, Lu W, Tour JM (2013) Electrospun composite nanofiber yarns containing oriented graphene nanoribbons. ACS Appl Mater Interfaces 5:6225–6231. https://doi.org/10.1021/am401161b

    Article  CAS  PubMed  Google Scholar 

  54. Zhang J, Wang K, Guo S, Wang S, Liang Z, Chen Z, Fu J, Xu Q (2014) One-step carbonization synthesis of hollow carbon nanococoons with multimodal pores and their enhanced electrochemical performance for supercapacitors. ACS Appl Mater Interfaces 6:2192–2198. https://doi.org/10.1021/am405375s

    Article  CAS  PubMed  Google Scholar 

  55. Vivekchand SRC, Rout CS, Subrahmanyam KS, Govindaraj A, 2008 R CNR Graphene-based electrochemical supercapacitors. J Chem Sci 120(1):9–13. https://doi.org/10.1007/s12039-008-0002

  56. Stoller M, Park S, Zhu Y, An J, Ruoff R (2008) Graphene-based ultracapacitors. Nano Lett 2008;8(10):3498–3502. URL: 〈http://pubs.acs.org/doi/abs/10.1021/nl802558y〉.

  57. Wang Y, Shi Z, Huang Y, Ma Y (2009) Supercapacitor devices based on graphene materials. J Phys Chem C 113(30):13103–13107. https://doi.org/10.1021/jp902214f

    Article  CAS  Google Scholar 

  58. Yu K, Lu G, Bo Z, Mao S, Chen J (2011) Carbon nanotube with chemically bonded graphene leaves for electronic and optoelectronic applications. J Phys Chem Lett 2:1556–1562. https://doi.org/10.1021/jz200641c

    Article  CAS  Google Scholar 

  59. Song Y, Xu J-L, Liu X-X (2014) Electrochemical anchoring of dual doping polypyrrole on graphene sheets partially exfoliated from graphite foil for high performance supercapacitor electrode. J Power Sources 249:48–58. https://doi.org/10.1016/j.jpowsour.2013.10.102

    Article  CAS  Google Scholar 

  60. Cai Y, Wang Y, Deng S, Chen G, Li Q, Han B et al (2014) Graphene-tungsten oxides composite for supercapacitor electrode. Ceram Int 40(3):4109–4116. https://doi.org/10.1016/j.ceramint.2013.08.065

    Article  CAS  Google Scholar 

  61. Deng L, Wang J, Zhu G, Kang L, Hao Z, Lei Z et al (2014) RuO2/graphene hybrid material for high performance electrochemical capacitor. J Power Sources 248:407–415. https://doi.org/10.1016/j.jpowsour.2013.09.081

    Article  CAS  Google Scholar 

  62. Wang D, Min Y, Yu Y, Peng B (2014) A general approach for fabrication of nitrogen doped graphene sheets and its application in supercapacitors. J Colloid Interface Sci 417:270–277. https://doi.org/10.1016/j.jcis.2013.11.021

    Article  CAS  PubMed  Google Scholar 

  63. Gopalakrishnan K, Govindaraj A, Rao CNR (2013) Extraordinary supercapacitor performance of heavily nitrogenated graphene oxide obtained by microwave synthesis. J Mater Chem A 1(26):7563. https://doi.org/10.1039/c3ta11385j

    Article  CAS  Google Scholar 

  64. Choi BG, Yang M, Hong WH, Choi JW, Huh YS (2012) 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano 6:4020–4028. https://doi.org/10.1021/nn3003345

    Article  CAS  PubMed  Google Scholar 

  65. Cheng Q, Tang J, Shinya N, Qin L-C (2013) Polyanniline modified graphene and carbon nanotube composite electrode for asymmetric supercapacitors of high energy density. J Power Sources 241:423–428. https://doi.org/10.1016/j.jpowsour.2013.04.105

    Article  CAS  Google Scholar 

  66. Wanga Z, Maa C, Wanga H, Liu Z, Hao Z (2013) Facilely synthesized Fe2O3–graphene nanocomposite as novel electrode materials for supercapacitors with high performance. J Alloys Compd 552:486–491

    Article  Google Scholar 

  67. Xie Q, Zhou S, Zheng A, Xie C, Yin C, Wu S, Zhang Y, Zhao P (2016) Sandwich-like nitrogen-enriched porous carbon/graphene composites as electrodes for aqueous symmetric supercapacitors with high energy density. Electrochim Acta 189:22–31. https://doi.org/10.1016/j.electacta.2015.12.087

    Article  CAS  Google Scholar 

  68. Yang M, Lee KG, Lee SJ, Lee SB, Han Y-K, Choi BG (2015) Three-dimensional expanded grapheneemetal oxide film via solid-state microwave irradiation for aqueous asymmetric supercapacitors. ACS Appl Mater Interfaces 7:22364–22371. https://doi.org/10.1021/acsami.5b06187

    Article  CAS  PubMed  Google Scholar 

  69. Stoller MD, Park S, Yanwu Z, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8(10):3498–3502 URL: 〈http://pubs.acs.org/doi/abs/10.1021/nl802558y

  70. Vivekchand SRC, Rout CS, Subrahmanyam KS, Govindaraj A, Rao CNR (2008) Graphene-based electrochemical supercapacitors. J Chem Sci 120(1):9–13. https://doi.org/10.1007/s12039-008-0002-7

    Article  CAS  Google Scholar 

  71. Wu Z-S, Wang D-W, Ren W, Zhao J, Zhou G, Li F, Cheng H-M (2010) Adv Funct Mater 20:3595. https://doi.org/10.1021/nn900297m

    Article  CAS  Google Scholar 

  72. Yang X, Zhu J, Qiu L, Li D (2011) Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors. Adv Mater 23(25):2833–2838. https://doi.org/10.1002/adma.201100261

    Article  CAS  PubMed  Google Scholar 

  73. Yoo JJ, Balakrishnan K, Huang J et al (2011) Ultrathin planar graphene supercapacitors. Nano Lett 11(4):1423 1427. https://doi.org/10.1021/nl200225j

    Article  CAS  Google Scholar 

  74. El-Kady MF, Strong V, Dubin S, Kaner RB (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074):1326–1330. https://doi.org/10.1126/science.1216744

    Article  CAS  Google Scholar 

  75. Kim T, Jung G, Yoo S, Suh KS, Ruoff RS (2013) Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores. ACS Nano 7(8):6899–6905. https://doi.org/10.1021/nn402077v

    Article  CAS  PubMed  Google Scholar 

  76. Pope MA, Korkut S, Punckt C, Aksay IA (2013) Supercapacitor electrodes produced through evaporative consolidation of graphene oxide-water-ionic liquid gels. J Electrochem Soc 160(10):A1653–A1660. https://doi.org/10.1149/2.017310jes

    Article  CAS  Google Scholar 

  77. Parvez K, Wu Z-S, Li R et al (2014) Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J Am Chem Soc 136(16):6083–6091. https://doi.org/10.1021/ja5017156

    Article  CAS  PubMed  Google Scholar 

  78. Purkait T, Singh G, Kumar D, Singh M, Dey RS (2018) Sci Rep 8:640. https://doi.org/10.1038/s41598-017-18593-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Li M, Pan F, Choo ESG, Lv Y, Chen Y, Xue J (2016) Designed construction of ghraphene and iron oxide freestanding electrode with enhanced flexible energy storage performance. ACS Appl Mater Interfaces 8:6972–6981. https://doi.org/10.1021/acsami.5b10853

    Article  CAS  PubMed  Google Scholar 

  80. Ma W, Chen S, Yang S, Chen W, Weng W, Cheng Y, Zhu M (2016) Flexible all-solid-state asymmetric supercapacitor based on transition metal oxide nanorods/reduced graphene oxide hybrid fibers with high energy density. Carbon 113:151e158. https://doi.org/10.1016/j.carbon.2016.11.051

    Article  CAS  Google Scholar 

  81. Song Y, Li Z, Guo K, Shao T (2016) Hierarchically ordered mesoporous carbon/graphene composites as supercapacitor electrode materials. Nanoscale. https://doi.org/10.1039/C6NR04130B

  82. Leea DG, Kim B-H (2016) MnO2 decorated on electrospun carbon nanofiber/graphene composites as supercapacitor electrode materials. Synth Met 219:115–123. https://doi.org/10.1016/j.synthmet.2016.06.007

    Article  CAS  Google Scholar 

  83. Zhou S, Gao H, Zhang C, Yang J, Tang S, Xu Q, Dong S (2017) BaMF4 (M ¼ Mn, co, Ni): new electrode materials for hybrid supercapacitor with layered polar structure. J Power Sources 359:585–591. https://doi.org/10.1016/j.jpowsour.2017.05.098

    Article  CAS  Google Scholar 

  84. Wang R, Han M, Zhao Q, Ren Z, Xu C, Hu N, Ning H, Song S, Lee J-M (2017) Construction of 3D CoO quantum dots/graphene hydrogels as binder-free electrodes for ultra-high energy storage applications. Electrochim Acta 686(17):31014–31019. https://doi.org/10.1016/j.electacta.2017.05.042

    Article  CAS  Google Scholar 

  85. Zhou H, Liu D, Luo F, Luo B, Tia Y, Che D, Shen C (2018) Preparation of graphene nanowalls on nickel foam as supercapacitor electrodes. Micro Nano Lett 13(6):842–844b. https://doi.org/10.1049/mnl.2017.0922

    Article  CAS  Google Scholar 

  86. Kumru B, Antonietti M, Schmidt BVKJ (2017) Enhanced dispersibility of graphitic carbon nitride particles in aqueous and organic media via a one-pot grafting approach, American Chemical Society. Langmuir 33:9897–9906. https://doi.org/10.1021/acs.langmuir.7b02441

    Article  CAS  PubMed  Google Scholar 

  87. Rok Lee Y, Kim SC, Lee H-i, Jeong HM, Raghu AV, Reddy KR, Kim BK (2011) Graphite oxides as effective fire retardants of epoxy resin. Macromol Res 19(1):66–71. https://doi.org/10.1007/s13233-011-0106-7

    Article  CAS  Google Scholar 

  88. Son DR, Raghu AV, Reddy KR, Jeong HM (2016) Compatibility of thermally reduced graphene with polyesters. J Macromol Sci B: Phys 55(11):1099–1110. https://doi.org/10.1080/00222348.2016.1242529

    Article  CAS  Google Scholar 

  89. Hassan M, Haque E, Reddy KR, Minett AI, Chen J, Gomes VG (2014) Edge-enriched graphene quantum dots for enhanced photo-luminescence and supercapacitance. Nanoscale 6:11988. https://doi.org/10.1039/c4nr02365j

    Article  CAS  PubMed  Google Scholar 

  90. Fan J, Xiao Q, Fang Y, Li L, Yuan W (2018) A rechargeable Zn/graphite dual-ion battery with an ionic liquid-based electrolyte. Ionics. https://doi.org/10.1007/s11581-018-2644-x

  91. Sharma RK, Rastogi AC, Desu SB (2008) Electrochim Acta 53:7690. https://doi.org/10.1016/j.electacta.2008.04.028

    Article  CAS  Google Scholar 

  92. Simon P, Burke A (2008) Nanostructured carbons: double-layer capacitance and more. Electrochem Soc Interface 17(1):38–44 URL http://www.electrochem.org/dl/interface/spr/spr08/spr08_p38-43.pdfS

    CAS  Google Scholar 

  93. Wei L, Yushin G (2012) Nanostructured activated carbons from natural precursors for electrical double layer capacitors. Nano Energy 1(4):552–565. https://doi.org/10.1016/j.nanoen.2012.05.002

    Article  CAS  Google Scholar 

  94. Jurewicz K, Vix-Guterl C (2004) Capacitance properties of ordered porous carbon materials prepared by a templating procedure. J Phys Chem Solids 65:287–293. https://doi.org/10.1016/j.jpcs.2003.10.024

    Article  CAS  Google Scholar 

  95. Fernández J, Morishita T, Toyoda M (2008) Performance of mesoporous carbons derived from poly (vinyl alcohol) in electrochemical capacitors. J Power Sources 175:675–679. https://doi.org/10.1016/j.jpowsour.2007.09.042

    Article  CAS  Google Scholar 

  96. Portet C, Taberna P, Simon P, Laberty-Robert C (2004) Modification of Al current collector surface by sol–gel deposit for carbon–carbon supercapacitor applications. Electrochim Acta 49(6):905–912. https://doi.org/10.1016/j.electacta.2003.09.043

    Article  CAS  Google Scholar 

  97. Wang R, Han M, Zhao Q, Ren Z, Guo X, Xu C, Hu N, Lu L (2017) Hydrothermal synthesis of nanostructured graphene/polyaniline composites as highcapacitance electrode materials for supercapacitors. Sci Rep 7:44562. https://doi.org/10.1038/srep44562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Syarif N, Tribidasari IA, Wibowo W (2013) Binder-less activated carbon electrode from gelam wood for use in supercapacitors. J Electrochem Sci Eng 3(2):37–45. https://doi.org/10.5599/jese.2012.0028

    Article  CAS  Google Scholar 

  99. Andres B, Forsberg S, Vilches AP, Zhang R, Andersson H, Hummelgård M, Bäckström J, Olin H (2012) Supercapacitors with graphene coated paper electrodes. Nord Pulp Pap Res J 27(2):481

    Article  CAS  Google Scholar 

  100. Roozbeh H, Niya A, Daud W, Sahu JN (2013) Preparation and characterization of activated carbon from apple waste by microwave assisted phosphoric acid. Bio Resources 8(2):2950–2966

    Google Scholar 

  101. Harris PF (1999) Carbon nanotubes and related structures: new materials for the twenty-first n century. Cambridge University Press, Cambridge ISBN: 0 521 55446 2

    Book  Google Scholar 

  102. Journet C, Maser WK, Bernier P, Loiseau A, Lamy de la Chapelle M, Lefrant S, Deniard P, Lee R, Fischer JE (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388(6644):756–758. https://doi.org/10.1038/41972

    Article  CAS  Google Scholar 

  103. Ci L, Manikoth SM, Li X, Vajtai R, Ajayan PM (2007) Ultra thick freestanding aligned carbon nanotube films. Adv Mater 19(20):3300–3303. https://doi.org/10.1002/adma.200602974

    Article  CAS  Google Scholar 

  104. Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG, Rinzler D, Colbert T, Scuseria GE, Tomanek D, Fischer JE, Smalley RE (1996) Crystalline ropes of metallic carbon nanotubes. Science 273(5274):483–487 8662534

    Article  CAS  Google Scholar 

  105. Ebbesen TW, Ajayan PM (1992) Large-scale synthesis of carbon nanotubes. Nature 358(6383):220–222

    Article  CAS  Google Scholar 

  106. Zheng B, Lu C, Gu G, Makarovski A, Finkelstein G, Liu J (2002) Efficient CVD growth of single-ealled carbon nanotubes on surfaces using carbon monoxide precursor. Nano Lett 2(8):895–898, and references cited therein. https://doi.org/10.1021/nl025634d

    Article  CAS  Google Scholar 

  107. Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ (1977) Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J Chem Soc, Chem Comm 1977,0,578–580. https://doi.org/10.1039/C39770000578

  108. Lu W, Qu L, Dai L, Henry K (2007) Superior capacitive performance of aligned carbon nanotubes in ionic liquids. ECS Trans 6(25):257–261. https://doi.org/10.1149/1.2943245

    Article  Google Scholar 

  109. Zilli D, Bonelli PR, Cukierman AL (2006) Effect of alignment on adsorption characteristics of self-oriented multi-walled carbon nanotube arrays. Nanotechnology 17(20):5136–5141. https://doi.org/10.1088/0957-4484/17/20/016

    Article  Google Scholar 

  110. Talapatra S, Kar S, Pal SK, Vajtai R, Ci L, Victor P, Shaijumon MM, Kaur S, Nalamasu O, Ajayan PM (2006) Direct growth of aligned carbon nanotubes on bulk metals. Nat Nanotechnol 1(2):112–116. https://doi.org/10.1038/nnano.2006.56

    Article  CAS  PubMed  Google Scholar 

  111. Pushparaj VL, Shaijumon MM, Kumar A, Murugesan S, Ci L, Vajtai R et al (2007) Flexible energy storage devices based on nanocomposite paper. Proc Natl Acad Sci 104(34):13574–13577. https://doi.org/10.1073/pnas.0706508104

    Article  CAS  PubMed  Google Scholar 

  112. Pandolfo A, Hollenkamp A (2006) Carbon properties and their role in supercapacitors. JPowerSources 157(1):11–27. https://doi.org/10.1016/j.jpowsour.2006.02.065

    Article  CAS  Google Scholar 

  113. Futaba DN, Hat K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M, Iijima S (2006) Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat Mater 5(12):987–994. https://doi.org/10.1038/nmat1782

    Article  CAS  PubMed  Google Scholar 

  114. Honda Y, Haramoto T, Takeshige M, Shiozaki H, Kitamura T, Ishikawa M (2007) Aligned MWCNT sheet electrodes prepared by transfer methodology providing high-power capacitor performance. Electrochem Solid-State Lett 10(4):A106–A110. https://doi.org/10.1149/1.2437665

    Article  CAS  Google Scholar 

  115. Wang G, Zhang B, Yu Z, Qu M (2005) Manganese oxide/MWNTs composite electrodes for supercapacitors. Solid State Ionics 176(11–12):1169–1174. https://doi.org/10.1016/j.ssi.2005.02.005

    Article  CAS  Google Scholar 

  116. Zhang H, Cao G, Wang Z, Yang Y, Shi Z, Gu Z (2008) Growth of manganese oxide nano flowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett 8(9):2664–2668. https://doi.org/10.1021/nl800925j

    Article  CAS  PubMed  Google Scholar 

  117. Zhang H, Cao G, Yang Y (2007) Using a cut–paste method to prepare a carbon nanotube fur electrode. Nanotechnology 18(19):195607–195610. https://doi.org/10.1088/0957-4484/18/19/195607

    Article  CAS  Google Scholar 

  118. Zhang H, Cao G, Yang Y, Gu Z (2008) Comparison between electrochemical properties of aligned carbon nanotube array and entangled carbon nanotube electrodes. J Electrochem Soc 155(2):K19–K22. https://doi.org/10.1149/1.2811864

    Article  CAS  Google Scholar 

  119. Lu W, Qu L, Henry K, Dai L (2009) High performance electrochemical capacitors from aligned carbon nanotube electrodes and ionic liquid electrolytes. J Power Sources 189(2):1270–1277. https://doi.org/10.1016/j.jpowsour.2009.01.009

    Article  CAS  Google Scholar 

  120. Rangom Y, Tang X, Nazar LF (2015) Carbon nanotubes based supercapacitors with excellent ac line filtering and rate capability via improved interfacial impedance. ACS Nano 9(7):7248–7255. https://doi.org/10.1021/acsnano.5b02075

    Article  CAS  PubMed  Google Scholar 

  121. Gao L, Peng A, Wang ZY et al (2008) Growth of aligned carbon nanotube arrays on metallic substrate and its application tosupercapacitors. Solid State Commun 146(9–10):380–383. https://doi.org/10.1016/j.ssc.2008.03.034

    Article  CAS  Google Scholar 

  122. Pint CL, Nicholas NW, Xu S et al (2011) Three dimensiona lsolid-state supercapacitors from aligned single-walled carbon nanotube array templates. Carbon 49(14):4890–4897. https://doi.org/10.1016/j.carbon.2011.07.011

    Article  CAS  Google Scholar 

  123. Pint CL, Nicholas NW, Xu S et al (2011) Three dimensional solid-state supercapacitors from aligned single-walled carbon nanotube array templates. Carbon 49(14):4890–4897. https://doi.org/10.1016/j.carbon.2011.07.011

    Article  CAS  Google Scholar 

  124. Ojha K, Kumar B, Ganguli AK (2017) Biomass derived graphene-like activated and non-activated porous carbon for advanced supercapacitors. J Chem Sci 129(3):397–404. https://doi.org/10.1007/s12039-017-1248-8

    Article  CAS  Google Scholar 

  125. Dorfler S, Felhosi I, Marek T et al (2013) High power supercapelectrodes based on vertical aligned carbon nanotubes on aluminum. J Power Sources 227:218–228. https://doi.org/10.1016/j.jpowsour.2012.11.068

    Article  CAS  Google Scholar 

  126. Kim B, Chung H, Kim W (2012) High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes. Nanotechnology 23(15):155401. https://doi.org/10.1088/0957-4484/23/15/155401

    Article  CAS  PubMed  Google Scholar 

  127. Reddy KR, Lee K-P, Gopalan AI, Kim MS, Showkat AM, Nho YC (2006) Synthesis of metal (Fe or Pd)/alloy (Fe–Pd)- nanoparticles- embedded multiwall carbon nanotube/sulfonated polyaniline composites by g irradiation. J Polym Sci A Polym Chem 44:3355–3364. https://doi.org/10.1002/pola.21451

    Article  CAS  Google Scholar 

  128. Hiraoka T, Izadi-Najafabadi A, Yamada T, Futaba DN, Yasuda S, Tanaike O, Hatori H, Yumura M, Iijima S, Hata K (2010) Compact and light supercapacitor electrodes from a surface-only solid by opened carbon nanotubes with 2 200 m2 g−1 surface area. Adv Funct Mater 20(3):422–428. https://doi.org/10.1002/adfm.200901927

    Article  CAS  Google Scholar 

  129. Fiorentino G, Vollebregt S, Tichelaar FD, Ishihara R, Sarro PM Impact of the atomic layer deposition precursors diffusion on solid-state carbon nanotube based supercapacitors performances. Nanotechnology 26(6):064002. https://doi.org/10.1088/0957-4484/26/6/064002

  130. Kaempgen M, Ma J, Gruner G, Wee G, Mhaisalkar SG (2007) Bifunctional carbon nanotube networks for supercapacitors. Appl Phys Lett 90(26):264104. https://doi.org/10.1063/1.2749187

    Article  CAS  Google Scholar 

  131. Hsu Y-K, Chen Y-C, Lin Y-G, Chen L-C, Chen K-H (2012) High-cell-voltage supercapacitor of carbon nanotube/carbon cloth operating in neutral aqueous solution. J Mater Chem 22(8):3383–3387. https://doi.org/10.1039/C1JM14716A

    Article  CAS  Google Scholar 

  132. Yoo Y, Kim S, Kim B, Kim W (2015) 2.5 V compact supercapacitors based on ultrathin carbon nanotube films for AC line filtering. J Mater Chem A 3(22):11801–11806. https://doi.org/10.1039/C5TA02073E

    Article  CAS  Google Scholar 

  133. Du C, Yeh J, Pan N (2005) High power density supercapacitors using locally aligned carbon nanotube electrodes. Nanotechnology 16(4):350–353. https://doi.org/10.1088/0957-4484/16/4/003

    Article  CAS  Google Scholar 

  134. Ghosh A, Lee YH (2012) Carbon-based electrochemical capacitors. Chem Sus Chem 5:480–499. https://doi.org/10.1002/cssc.201100645

    Article  CAS  Google Scholar 

  135. Khan MU, Reddy KR, Snguanwongchai T, Haque E, Gomes VG (2016) Polymer brush synthesis on surface modified carbon nanotubes via in situ emulsion polymerization. Colloid Polym Sci 294:1599–1610. https://doi.org/10.1007/s00396-016-3922-7

    Article  CAS  Google Scholar 

  136. Cakici M, Reddy KR, Alonso-Marroquin F (2016) Advanced electrochemical energy storage supercapacitors based on the flexible carbon fiber fabric-coated with uniform coral-like MnO2 structured electrodes. Chem Eng J 309(2017):151–158. https://doi.org/10.1016/j.cej.2016.10.012

    Article  CAS  Google Scholar 

  137. Bello A, Fashedemi OO, Lekitima JN, Fabiane M, Dodoo-Arhin D et al (2013) High-performance symmetric electrochemical capacitor based on graphene foam and nanostructured manganese oxide. AIP Adv 3:082118. https://doi.org/10.1063/1.4819270

    Article  CAS  Google Scholar 

  138. Cao X, Zheng B, Shi W, Yang J, Fan Z et al (2015) Reduced graphene oxide- wrapped MoO3 composites prepared by using metal–organic frameworks as precursor for all-solid-state flexible supercapacitors. Adv Mater 27:4695–4701. https://doi.org/10.1002/adma.201501310

    Article  CAS  PubMed  Google Scholar 

  139. Gund GS, Dubal DP, Patil BH, Shinde SS, Lokhande CD (2013) Enhanced activity of chemically synthesized hybrid graphene oxide/Mn3O4 composite for high performance supercapacitors. Electrochim Acta 92:205–215. https://doi.org/10.1016/j.electacta.2012.12.120

    Article  CAS  Google Scholar 

  140. Xie LJ, Wu JF, Chen CM, Zhang CM, Wan L et al (2013) A novel asymmetric supercapacitor with an activated carbon cathode and a reduced graphene oxide–cobalt oxide nanocomposite anode. J Power Sources 242:148–156. https://doi.org/10.1016/j.jpowsour.2013.05.081

    Article  CAS  Google Scholar 

  141. Yu X, Lu B, Xu Z (2014) Super long-life supercapacitors based on the construction of nanohoneycomb-like strongly coupled CoMoO(4)-3D graphene hybrid electrodes. Adv Mater 26:1044–1051. https://doi.org/10.1002/adma.201304148

    Article  CAS  PubMed  Google Scholar 

  142. Peng L, Peng X, Liu B, Wu C, Xie Y et al (2013) Ultrathin two-dimensional MnO2/ graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano Lett 13:2151–2157. https://doi.org/10.1021/nl400600x

    Article  CAS  PubMed  Google Scholar 

  143. Wang CC, Chen HC, Lu SY (2014) Manganese oxide/graphene aerogel composites as an outstanding supercapacitor electrode material. Chem Eur J 20:517–523. https://doi.org/10.1002/chem.201303483

    Article  CAS  PubMed  Google Scholar 

  144. Kumar R, Kim HJ, Park S, Srivastava A, Oh IK (2014) Graphene-wrapped and cobalt oxide-intercalated hybrid for extremely durable super-capacitor with ultra high energy and power densities. Carbon 79:192–202. https://doi.org/10.1016/j.carbon.2014.07.059

    Article  CAS  Google Scholar 

  145. Reddy KR, Hassan M, Gomes VG (2015) Hybrid nanostructures based on titanium dioxide for enhancedphotocatalysis. Appl Catal A Gen 489:1–16. https://doi.org/10.1016/j.apcata.2014.10.001

    Article  CAS  Google Scholar 

  146. Du J, Zhou G, Zhang H, Cheng C, Ma J (2014) Ultrathin porous NiCo2O4 nanosheet arrays on flexible carbon fabric for high-performance supercapacitors. ACS Appl Mater Interfaces 5:7405–7409. https://doi.org/10.1021/am4017335

    Article  CAS  Google Scholar 

  147. Yang W, Gao Z, Ma J, Zhang X, Wang J et al (2014) Hierarchical NiCo2O 4@ NiO core–shell hetero-structured nanowire arrays on carbon cloth for a high-performance flexible all-solid-state electrochemical capacitor. J Mater Chem A 2:1448–1457. https://doi.org/10.1039/C3TA14488G

    Article  CAS  Google Scholar 

  148. Huang L, Chen D, Ding Y, Feng S, Wang ZL et al (2013) Nickel-cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high performance pseudocapacitors. Nano Lett 13:3135–3139. https://doi.org/10.1021/nl401086t

    Article  CAS  PubMed  Google Scholar 

  149. Shakir I, Shahid M, Rana UA, Al Nashef IM, Hussain R (2013) Nickel–cobalt layered double hydroxide anchored zinc oxide nanowires grown on carbon Fiber cloth for high-performance flexible Pseudocapacitive energy storage devices. Electrochim Acta 129:28–32. https://doi.org/10.1016/j.electacta.2014.02.082

    Article  CAS  Google Scholar 

  150. Xiao J, Wan L, Yang S, Xiao F, Wang S (2014) Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high performance pseudocapacitor. Nano Lett 14:831–838. https://doi.org/10.1021/nl404199v

    Article  CAS  PubMed  Google Scholar 

  151. Lu X, Yu M, Zhai T, Wang G, Xie S et al (2013) High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode. Nano Lett 13:2628–2633. https://doi.org/10.1021/nl400760a

    Article  CAS  PubMed  Google Scholar 

  152. Cheng S, Yang L, Liu Y, Lin W, Huang L et al (2013) Carbon fiber paper supported hybrid nanonet/nanoflower nickel oxide electrodes for high-performance pseudo capacitors. J Mater Chem A 1:7709–7716. https://doi.org/10.1039/C3TA10560A

    Article  CAS  Google Scholar 

  153. Guan C, Liu J, Wang Y, Mao L, Fan Z et al (2015) Iron oxide-decorated carbon for supercapacitor anodes with ultrahigh energy density and outstanding cycling stability. ACS Nano 9:5198–5207. https://doi.org/10.1021/acsnano.5b00582

    Article  CAS  PubMed  Google Scholar 

  154. Hou H, Reneker DH (2004) Carbon nanotubes on carbon nanofibers: a novel structure based on electrospun polymer nanofibers. Adv Mater 16:69–73. https://doi.org/10.1002/adma.200306205

    Article  CAS  Google Scholar 

  155. Ramakrishna S, Fujihara K, Teo WE, Yong T, Ma Z et al (2003) Electrospun nanofibers: solving global issues. Mater Today 9:40–50. https://doi.org/10.1016/S1369-7021(06)71389-X

    Article  Google Scholar 

  156. An GH, Ahn HJ (2013) Activated porous carbon nanofibers using Sn segregation for high-performance electrochemical capacitors. Carbon 65:87–96. https://doi.org/10.1016/j.carbon.2013.08.002

    Article  CAS  Google Scholar 

  157. Zhang F, Yuan C, Zhu J, Wang J, Zhang X et al (2013) Flexible films derived from electrospun carbon nanofibers incorporated with Co3O4 hollow nanoparticles as self-supported electrodes for electrochemical capacitors. Adv Funct Mater 23:3909–3915. https://doi.org/10.1002/adfm.201203844

    Article  CAS  Google Scholar 

  158. Kim BH, Yang KS, Yang DJ (2013) Electrochemical behavior of activated carbon nanofiber-vanadium pentoxide composites for double-layer capacitors. Electrochim Acta 109:859–865. https://doi.org/10.1016/j.electacta.2013.07.180

    Article  CAS  Google Scholar 

  159. Kim CH, Kim BH (2015) Zinc oxide/activated carbon nanofiber composites for highperformance supercapacitor electrodes. J Power Sources 274:512–520. https://doi.org/10.1016/j.jpowsour.2014.10.126

    Article  CAS  Google Scholar 

  160. Kim C, Yang K (2003) Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning. Appl Phys Lett 83:1216–1218. https://doi.org/10.1063/1.1599963

    Article  CAS  Google Scholar 

  161. Wang W, Guo S, Lee I, Ahmed K, Zhong J et al (2014) Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors. Sci Rep 4:4452. https://doi.org/10.1038/srep04452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. He Y, Chen W, Zhou J, Li X, Tang P et al (2013) Constructed uninterrupted charge transfer pathways in three-dimensional micro/nano interconnected carbon-based electrodes for high energy-density ultra light flexible supercapacitors. ACS Appl Mater Interfaces 6:210–218. https://doi.org/10.1021/am403760h

    Article  CAS  PubMed  Google Scholar 

  163. Sawangphruk M, Srimuk P, Chiochan P, Krittayavathananon A, Luanwuthi S et al (2013) High-performance supercapacitor of manganese oxide/reduced graphene oxide nanocomposite coated on flexible carbon fiber paper. Carbon 60:109–116. https://doi.org/10.1016/j.carbon.2013.03.062

    Article  CAS  Google Scholar 

  164. Zhang LL, Xiong Z, Zhao XA (2013) Composite electrode consisting of nickel hydroxide, carbon nanotubes, and reduced graphene oxide with an ultrahigh electrocapacitance. J Power Sources 222:326–332. https://doi.org/10.1016/j.jpowsour.2012.09.016

    Article  CAS  Google Scholar 

  165. Zhu C, Yang P, Chao D, Wang X, Zhang X et al (2015) All metal nitrides solid-state asymmetric supercapacitors. Adv Mater 27:4566–4571. https://doi.org/10.1002/adma.201501838

    Article  CAS  PubMed  Google Scholar 

  166. Wang JG, Yang Y, Huang ZH, Kang F (2013) A high-performance asymmetric supercapacitor based on carbon and carbon–MnO 2 nanofiber electrodes. Carbon 6:190–199. https://doi.org/10.1016/j.carbon.2013.04.084

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Velmathi Guruviah.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubey, R., Guruviah, V. Review of carbon-based electrode materials for supercapacitor energy storage. Ionics 25, 1419–1445 (2019). https://doi.org/10.1007/s11581-019-02874-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-02874-0

Keywords

Navigation