Skip to main content
Log in

Molecular theory considering nuclear potential wells

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

This article introduces potential wells around nuclei and their roles in chemical bonds. The approach uses one-electron Bohr atomic model concept. Multi-electron atoms are converted to one-electron atoms by grounding all inactive, non-reacting electrons using the Apparent Nuclear Charge (ANC) and Electron Shielding Effect (ESE) concepts introduced in earlier publications. Then, the resulting two one-electron atoms and their potential wells are utilized to obtain the related chemical bond length. The methodology is applicable to all elements of periodic table without a need for any additional tool. To test the concept, calculated bond lengths were compared to experimental ones for about 90 different bonds, which showed an average error of less than 5%. The article discusses some nontraditional views for chemical bonds which may contradict the traditional beliefs in chemistry. Hopefully, readers would consider the calculated results in support of the presented views. Attached to this article is a computer software program which was prepared with sample input and output files for readers. The software can be utilized to obtain any interested bond length. The software is applicable to all elements in the periodic table up to the element Hassium with the atomic number of 108.

Graphical abstract

Nuclear potential well associated with the electron of hydrogen atom

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zadeh DH (2019) A new approach to estimate atomic energies. J Mol Model 25:366. https://doi.org/10.1007/s00894-019-4259-1

    Article  CAS  PubMed  Google Scholar 

  2. Zadeh DH (2019) Atomic shells according to ionization energies. J Mol Model 25(8):251 https://link.springer.com/article/10.1007/s00894-019-4112-6

    Article  CAS  Google Scholar 

  3. Zadeh DH (2017) Electronic structures of elements according to ionization energies. J Mol Model 23(12):357 https://link.springer.com/article/10.1007/s00894-017-3534-2

    Article  Google Scholar 

  4. Politzer P, Zadeh DH (1994) Bond-breaking energies for 2, 2'-dichlorodiethyl sulfide (sulfur mustard) in media of different dielectric constants. J Phys Chem 98:1576–1578. https://doi.org/10.1021/j100057a008

    Article  CAS  Google Scholar 

  5. Zadeh DH, Grice ME, Concha MC, Murray JS, Politzer P (1995) Nonlocal density functional calculation of gas phase heats of formation. J Comput Chem 16(5):654–658. https://doi.org/10.1002/jcc.540160513

    Article  Google Scholar 

  6. Bohr N (1913) The spectra of helium and hydrogen. Nature 92:231–232. https://doi.org/10.1038/092231d0

    Article  Google Scholar 

  7. Bohr N (1913) On the constitution of atoms and molecules, part I. Philos Mag 26(151):1–24. https://doi.org/10.1080/14786441308634955

    Article  CAS  Google Scholar 

  8. Hehre WJ, Radom L, Schleyer PVR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York; https://doi.org/10.1002/jcc.540070314

  9. Sharpe AG (1986) Inorganic chemistry. Longman, London and New York; https://doi.org/10.1002/bbpc.19860901144

  10. Szabo A, Ostlund NS (1989) Modern quantum chemistry. McGraw-Hill, New York ISBN-10: 0486691861

    Google Scholar 

  11. Atkins PW (1986) Physical chemistry. W.H. Freeman and Company, New York ISBN-10: 0716731681

    Google Scholar 

  12. Drago RS (1977) Physical methods in chemistry. Saunders College Publishing, Philadelphia ISBN-10: 0721631843

    Google Scholar 

  13. Pauling L, Wilson EB (1985) Introduction to quantum mechanics with applications to chemistry. Dover Publications, INC., New York ISBN-10:0486648710

    Google Scholar 

  14. Herzberg G (1945) Atomic spectra and atomic structure. Dover Publications, New York ISBN-10:0486601153

    Google Scholar 

  15. Johnson CS, Pedersen LG (1986) Problems and solutions in quantum chemistry and physics. Dover Publications, Inc., New York ISBN-10:0486151530

    Google Scholar 

  16. Schrödinger E (1926) An undulatory theory of the mechanics of atoms and molecules. Phys Rev 28(6):1049–1070. https://doi.org/10.1103/PhysRev.28.1049

    Article  Google Scholar 

  17. Hartree DR (1928) The wave mechanics of an atom with a non-coulomb central field. Math Proc Camb Philos Soc 24(1):111. https://doi.org/10.1017/S0305004100011920

    Article  CAS  Google Scholar 

  18. Hartree DR, Hartree W (1935) Self-consistent field, with exchange, for beryllium. Proc Royal Soc London, A 150((869):9. https://doi.org/10.1098/rspa.1935.0085

    Article  CAS  Google Scholar 

  19. Slater JC (1928) The self consistent field and the structure of atoms. Phys Rev 32(3):339–348. https://doi.org/10.1103/PhysRev.32.339

    Article  Google Scholar 

  20. Gaunt JA (1928) A theory of Hartree’s atomic fields. Math Proc Camb Philos Soc 24(2):328–342. https://doi.org/10.1017/S0305004100015851

    Article  CAS  Google Scholar 

  21. Slater JC (1930) Note on Hartree’s method. Phys Rev 35(2):210–211. https://doi.org/10.1103/PhysRev.35.210.2

    Article  Google Scholar 

  22. Moller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:618. https://doi.org/10.1103/PhysRev.46.618

    Article  CAS  Google Scholar 

  23. Feynman RP (1939) Forces in molecules. Phys Rev 56:340. https://doi.org/10.1103/PhysRev.56.340

    Article  CAS  Google Scholar 

  24. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136:864. https://doi.org/10.1103/PhysRev.136.B864

    Article  Google Scholar 

  25. March NH (1982) Electron density theory of atoms and molecules. J Phys Chem 86:2262. https://doi.org/10.1021/j100209a022

    Article  CAS  Google Scholar 

  26. Milne EA (1927) The total energy of binding of a heavy atom. Proc Camb Philos Soc 23:794. https://doi.org/10.1017/S0305004100015589

    Article  CAS  Google Scholar 

  27. Lide DR (2007) CRC handbook of chemistry and physics, CRC Press LLC, Boca Raton, FL. ISBN: 0849304881, ISBN13: 9780849304880

  28. Olmsted JA, Williams GM (2011) Chemistry, 5th edition. Wiley, New York ISBN-13: 978–0471478119, ISBN-10: 0471478113

  29. Huheey JE, Keiter EA, Keiter RL (1993) Inorganic chemistry: principles of structure and reactivity. HarperCollins College Publishers, New York, ISBN-13: 978–0060429959, ISBN-10: 006042995X

  30. Cottrell TL (1958) The strengths of chemical bonds. Butterworths, London. https://doi.org/10.1002/ange.19600721618

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariush Habibollah Zadeh.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is submitted in honor of Prof. Peter Politzer who admitted the author to his research group, taught, helped, and supported him until he could make contributions to theoretical physical chemistry.

Supplementary information

ESM 1

(PDF 1814 kb)

ESM 2

(PDF 316 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zadeh, D.H. Molecular theory considering nuclear potential wells. J Mol Model 27, 185 (2021). https://doi.org/10.1007/s00894-021-04804-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04804-2

Keywords

Navigation