Skip to main content
Log in

Atomic shells according to ionization energies

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

This article relies only on experimental data rather than getting involved with theories, calculations, approximations, or interpolations. Experimental ionization energies of all atoms in the periodic table are collected and utilized to discover the order of electronic shells. The assumption in this paper is mainly the energy difference between atomic shells. In other words, one should observe an abrupt change in the energy moving from one atomic shell to another. Electronic energies within an atom are either kinetic or potential. Potential energy can be further broken into “electron–nucleus attraction” and “electron–electron repulsion” energies. The ionization energy that holds an electron onto an atom is equal to the balance of electronic energies. Electronic energies should show jumps and drops when moving from one atomic shell to another and ionization energy is the only part of total energy that can be obtained experimentally. Hence, the variations of experimental ionization energies between consecutive electrons were utilized to investigate the order of atomic shells. The variations of ionization energy were drawn versus the electron numbers to find abrupt changes in the energy, which are so-called “peaks”. Then the observed peaks in the graphs were recorded as evidence for the order of atomic shells. The observed order of peaks did not completely match and support the order of atomic shells given by the well-known aufbau (or Madelung) rule. Thus, the observation is reported and a consistent view of the periodic table according to the new order is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Scerri E (2019) Can quantum ideas explain chemistry’s greatest icon? Nature 565:557–559

    Article  CAS  Google Scholar 

  2. Jensen B (1986) Classification, symmetry and the periodic table. Comp Maths Appls 12B(I/2):487–510

  3. Yakushev A, Eichler R (2016) Gas-phase chemistry of element 114, flerovium. Nobel Symposium NS160 – Chemistry and Physics of Heavy and Superheavy Elements. https://doi.org/10.1051/epjconf/201613107003

  4. Jensen WB (1982) The positions of lanthanum (actinium) and lutetium (lawrencium) in the periodic table. J Chem Educ 59:634–636

  5. Scerri ER (1998) How Good Is the Quantum Mechanical Explanation of the Periodic System? J Chem Edu 75(11):1384. https://doi.org/10.1021/ed075

  6. Bohr N (1913) On the constitution of atoms and molecules, part I. Philos Mag 26(151):1–24. https://doi.org/10.1080/14786441308634955

  7. Meek TL, Allen LC (2002) Configuration irregularities: deviations from the Madelung rule and inversion of orbital energy levels. Chem Phys Lett 362(5–6):362–364. https://doi.org/10.1016/S0009-2614(02)00919-3

    Article  CAS  Google Scholar 

  8. Schoenfeld WG, Chang ES, Geller M, Johansson S, Nave G, Sauval AJ, Grevesse N (1995) High excitation Rydberg levels of Fe I from the ATMOS solar spectrum at 2.5 and 7 μm, Astron. Astrophys 301:593–601

  9. Johnson WR, Soff G (1985) The Lamb shift in hydrogen-like atoms, 1 ≤ Z ≤ 110. At Data Nucl Data Tables 33:405–446. https://doi.org/10.1016/0092-640X(85)90010-5

  10. Beigang R, Schmidt D, West PJ (1983) Laser spectroscopy of high Rydberg states of light alkaline-earth elements (Be and Mg). J Phys (Paris) Colloques 44:C7–229–C7-237. https://doi.org/10.1051/jphyscol:1983719

  11. Kramida AE, Ryabtsev AN (2007) A critical compilation of energy levels and spectral lines of neutral boron. Phys Scr 76:544–557. https://doi.org/10.1088/0031-8949/76/5/024

  12. Haris K, Kramida A (2017) Critically evaluated spectral data for neutral carbon (C I). Astrophys J Suppl Ser 233:16. https://doi.org/10.3847/1538-4365/aa86ab

  13. Eriksson KBS, Pettersson JE (1971) New measurements in the spectrum of the neutral nitrogen atom. Phys Scr 3:211–217. https://doi.org/10.1088/0031-8949/3/5/003

  14. Eriksson KBS, Isberg HBS (1968) New measurements in the spectrum of atomic oxygen. Ark Fys (Stockholm) 37:221–230

  15. Lidén K (1949) The arc spectrum of fluorine. Ark Fys (Stockholm) 1(9):229–267 Erratum: 1(9):268

  16. Saloman EB, Sansonetti CJ (2004) Wavelengths, energy level classifications, and energy levels for the spectrum of neutral neon. J Phys Chem Ref Data 33:1113–1158. https://doi.org/10.1063/1.1797771

  17. Wu CM (1971) Studies in the optical spectrum of singly ionized sodium, Na II. Ph.D. Thesis, University of British Columbia, Canada, p 119

  18. Martin WC, Zalubas R (1980) Energy levels of magnesium, Mg I through Mg XII. J Phys Chem Ref Data 9:1–58. https://doi.org/10.1063/1.555617

  19. Biémont E, Frémat Y, Quinet P (1999) Ionization potentials of atoms and ions from lithium to tin (Z = 50). At Data Nucl Data Tables 71:117–146. https://doi.org/10.1006/adnd.1998.0803

  20. Jupén C, Engström L (2002) The spectrum and term system of S VII. Phys Scr 66:140–149. https://doi.org/10.1238/Physica.Regular.066a00140

  21. Sapirstein J, Cheng KT (2011) Matrix calculations of energy levels of the lithium isoelectronic sequence. Phys Rev A 83:012504. https://doi.org/10.1103/PhysRevA.83.012504

  22. Sugar J, Corliss C (1985) Atomic energy levels of the iron-period elements: potassium through nickel. J Phys Chem Ref Data 14(Suppl. 2):1–664

  23. Rodrigues GC, Indelicato P, Santos JP, Patté P, Parente F (2004) Bohrium, systematic calculation of total atomic energies of ground state configurations. At Data Nucl Data Tables 86:117–233. https://doi.org/10.1016/j.adt.2003.11.005

  24. Kramida A, Ralchenko Yu, Reader J, NIST ASD Team (2014) NIST ionization energy database NIST atomic spectra database (ver. 5.2). National Institute of Standards and Technology, Gaithersburg, MD. https://physics.nist.gov/asd. Accessed 9 August 2017

  25. Cotton FA, Wilkinson G (1988) Advanced inorganic chemistry, 5th edn. Wiley, New York

    Google Scholar 

  26. McNaught AD, Wilkinson A (1997) IUPAC. Compendium of chemical terminology, the Gold Book, 2nd edn. Blackwell, Oxford

    Google Scholar 

  27. Zadeh DH (2017) Electronic structures of elements according to ionization energies. J Mol Model 23:357. https://doi.org/10.1007/s00894-017-3534-2

    Article  CAS  PubMed  Google Scholar 

  28. Zadeh DH, Grice ME, Concha MC, Murray JS, Politzer P (1995) Nonlocal density functional calculation of gas phase heats of formation. J Comp Chem 16(5):654–658

  29. Gao J, Zadeh DH, Shao L (1995) A polarizable intermolecular potential function for simulation of liquid alcohols. J Phys Chem 99(44):16460–16467. https://doi.org/10.1021/j100044a039

    Article  CAS  Google Scholar 

  30. Grogan F, Holst M, Lindblom L, Amaro R (2017) Reliability assessment for large-scale molecular dynamics approximations. J Chem Phys 147(23):234106

    Article  Google Scholar 

  31. Liu R, Bloom BP, Waldeck DH, Zhang P, Beratan DN (2018) Improving solar cell performance using quantum dot triad charge-separation engines. J Phys Chem, C 122(11):5924–5934

  32. Monika S, Burov S, Weirich KL, Scholz BJ, Tabei SMA, Gardel ML, Dinner AR (2016) Cycling state that can lead to glassy dynamics in intracellular transport. Phys Rev 6(1):011037

    Google Scholar 

  33. Dunbar JA, Arthur EJ, White AM, Kubarych KJ (2015) Ultrafast 2D-IR and simulation investigations of preferential solvation and cosolvent exchange dynamics. J Phys Chem B 2015 119:6271–6279

  34. Ding X, Vilseck JZ, Hayes RL, Brooks CL (2017) Gibbs sampler-based lambda-dynamics and Rao-Blackwell estimator for alchemical free energy calculation. J Chem Theory Comput 13:2501–2510

  35. Hoehn R, Carignano MA, Kais S, Francisco JS, Gladich I (2016) Hydrogen bonding and orientation effects on the accommodation of methylamine at the air-water interface. J Chem Phys 144:214701

  36. Rego LGC, Batista VS (2003) Quantum dynamics simulations of interfacial electron transfer in sensitized TiO2 semiconductors. J Am Chem Soc 125(26):7989–7997

    Article  CAS  Google Scholar 

  37. Munteanu CR, Henriksen C, Felker PM, Fernandez B (2013) The He-, Ne-, and Ar-phosgene intermolecular potential energy surfaces. J Phys Chem A 117:3835–3843

  38. Mondal J, Morrone J, Berne BJ (2013) How hydrophobic drying forces impact the kinetics of molecular recognition. Proc Nat Acad Sci USA 110:13277–13282

    Article  CAS  Google Scholar 

  39. Mauguiere FAL, Collins P, Stamatiadis S, Li A, Ezra GS, Farantos SC, Kramer ZC, Carpenter BK, Wiggins S, Guo H (2016) Toward understanding the roaming mechanism in H + MgH -> Mg + HH reaction. J Phys Chem A 120:5145–5154

  40. Santra B, Klimes SBJ, Tkatchenko A, Alfe D, Slater B, Michaelides A, Car R, Scheffler M (2013) On the accuracy of van der Waals inclusive density-functional theory exchange-correlation functionals for ice at ambient and high pressures. J Chem Phys 139(15)

  41. Kollias AC, Domin D, Hill G, Frenklach M, Golden DM, Lester WAJ (2005) Quantum Monte Carlo Study of heats of formation and bond dissociation energies of small hydrocarbons. Int J Chem Kin 37:583

  42. McLeod MJ, Goodman AJ, Ye HZ, Nguyen HVT, Van Voorhis T, Johnson JA (2018) Robust gold nanorods stabilized by bidentate N-heterocyclic-carbene–thiolate ligands. Nat Chem. https://doi.org/10.1038/s41557-018-0159-8

  43. Marsalek O, Markland TE (2016) Ab initio molecular dynamics with nuclear quantum effects at classical cost: ring polymer contraction for density functional theory. J Chem Phys 144(5)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariush H. Zadeh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 112 kb)

ESM 2

(DOCX 1906 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zadeh, D.H. Atomic shells according to ionization energies. J Mol Model 25, 251 (2019). https://doi.org/10.1007/s00894-019-4112-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4112-6

Keywords

Navigation