Skip to main content
Log in

A B3LYP-D3 computational study of electronic, structural and torsional dynamic properties of mono-substituted naphthalenes: the effect of the nature and position of substituent

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

The effects of selected substituent groups (-CH3, -Br, -CO2CH3, -COOH, and -NH2) and their relative positions on the electronic and structural properties of mono-substituted naphthalenes were investigated theoretically. In order to elucidate the suitability of the studied substituents in different fields including chemistry, spectroscopy, and materials sciences, accurate DFT calculations were performed at the dispersion-corrected B3LYP level of theory (B3LYP-D3/6–311 +  + G(d,p)), and the obtained results were then validated by extensive comparisons with available experimental data. Among the studied substituents, the -NH2 group causes the maximum reduction of the HOMO–LUMO energy gap. This result revealed clearly the suitability of the -NH2 group, compared to other studied substituents, in the chemical synthesis of future organic-semiconductors having small energy gaps. In addition, the level of theory adopted in this study allowed the fine discrimination between the chemical reactivity parameters of the studied congeners, which is very difficult to perform experimentally. On the other hand, the rotational barriers of the studied non-halogen substituent groups were predicted. The greater sensitivity of the rotational barrier heights to the local environments, arising from intra-molecular interactions, was attributed to the -CH3 group. The torsional frequencies, calculated within the harmonic approximation, were also employed to relatively explore the differences between the environments of the same substituent at two different positions. The usefulness of these results can be manifested in the vibrational spectroscopy field, especially, for the IR/ Raman spectral analysis of polycyclic-aromatic congeners.

Method

All calculations were conducted within the Density functional theory (DFT) using the so-called dispersion-corrected B3LYP functional (B3LYP-D3) with the carefully selected 6–311 +  + G(d,p) basis set. The B3LYP-D3/6–311 +  + G(d,p) calculations were performed using the Gaussian 09 program, and the obtained results were visualized by employing the GaussView 6.0.16 program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be available on reasonable request.

References

  1. Knippenberg S, Starcke JH, Wormit M, Dreuw A (2010) The low-lying excited states of neutral polyacenes and their radical cations: A quantum chemical study employing the algebraic diagrammatic construction scheme of second order. Mol Phys 108(19–20):2801–2813. https://doi.org/10.1080/00268976.2010.526643

    Article  ADS  CAS  Google Scholar 

  2. Mei D, Lebarbier VM, Rousseau R, Glezakou VA, Albrecht KO, Kovarik L., ... Dagle RA (2013) Comparative investigation of benzene steam reforming over spinel supported Rh and Ir catalysts. ACS Catalys 3(6):1133–1143. https://doi.org/10.1021/cs4000427

  3. Terpstra P, van Weerden WJ (1936) On the symmetry of the benzene molecule. Recl Trav Chim Pays-Bas 55(2):161–169. https://doi.org/10.1002/recl.19360550211

    Article  CAS  Google Scholar 

  4. Capelli SC, Albinati A, Mason SA, Willis BT (2006) Molecular motion in crystalline naphthalene: analysis of multi-temperature X-ray and neutron diffraction data. J Phys Chem A 110(41):11695–11703. https://doi.org/10.1021/jp062953a

    Article  CAS  PubMed  Google Scholar 

  5. Falandysz J (1998) Polychlorinated naphthalenes: an environmental update. Environ Pollut 101(1):77–90. https://doi.org/10.1016/S0269-7491(98)00023-2

    Article  CAS  PubMed  Google Scholar 

  6. Jakobsson E, Asplund L (2000) Polychlorinated naphthalenes (PCNs). Volume 3 Anthropogenic Compounds Part K, 97–126. https://doi.org/10.1007/3-540-48915-0_5

  7. Pandya AB, Prajapati DG, Pandya SS (2012) Synthesis of novel Naphthalene COX inhibitors for anti-inflammatory activity. J Appl Pharm Sci 2(8):226–232. https://doi.org/10.7324/JAPS.2012.2840

    Article  CAS  Google Scholar 

  8. Du P, Salama F, Loew GH (1993) Theoretical study of the electronic spectra of a polycyclic aromatic hydrocarbon, naphthalene, and its derivatives. Chem Phys 173(3):421–437. https://doi.org/10.1016/0301-0104(93)80157-5

    Article  CAS  Google Scholar 

  9. Parker DS, Zhang F, Kim YS, Kaiser RI, Landera A, Kislov VV., ... Tielens AGGM (2012) Low temperature formation of naphthalene and its role in the synthesis of PAHs (polycyclic aromatic hydrocarbons) in the interstellar medium. Proc Natl Acad Sci 109(1):53–58. https://doi.org/10.1073/pnas.1113827108

  10. Zou W, Kalescky R, Kraka E, Cremer D (2013) Relating normal vibrational modes to local vibrational modes: benzene and naphthalene. J Mol Model 19:2865–2877. https://doi.org/10.1007/s00894-012-1697-4

    Article  CAS  PubMed  Google Scholar 

  11. Batterman S, Chin JY, Jia C, Godwin C, Parker E, Robins T., ... Lewis T (2012) Sources, concentrations, and risks of naphthalene in indoor and outdoor air. Indoor Air 22(4):266–278. https://doi.org/10.1111/j.1600-0668.2011.00760.x

  12. Edim MM, Enudi OC, Asuquo BB, Louis H, Bisong EA, Agwupuye JA., ... Bassey FI (2021) Aromaticity indices, electronic structural properties, and fuzzy atomic space investigations of naphthalene and its aza-derivatives. Heliyon 7(2). https://doi.org/10.1016/j.heliyon.2021.e06138

  13. Govindarajan M, Ganasan K, Periandy S, Karabacak M (2011) Experimental (FT-IR and FT-Raman), electronic structure and DFT studies on 1-methoxynaphthalene. Spectrochim Acta Part A Mol Biomol Spectrosc 79(3):646–653. https://doi.org/10.1016/j.saa.2011.03.051

    Article  ADS  CAS  Google Scholar 

  14. Fedorov IA, Marsusi F, Fedorova TP, Zhuravlev YN (2015) First principles study of the electronic structure and phonon dispersion of naphthalene under pressure. J Phys Chem Solids 83:24–31. https://doi.org/10.1016/j.jpcs.2015.03.018

    Article  ADS  CAS  Google Scholar 

  15. Jezierska A, Panek JJ (2020) Theoretical study of intramolecular hydrogen bond in selected symmetric “proton sponges” on the basis of DFT and CPMD methods. J Mol Model 26(2):37. https://doi.org/10.1007/s00894-020-4296-9

    Article  CAS  PubMed  Google Scholar 

  16. Mao Y, Head-Gordon M, Shao Y (2018) Unraveling substituent effects on frontier orbitals of conjugated molecules using an absolutely localized molecular orbital based analysis. Chem Sci 9(45):8598–8607. https://doi.org/10.1039/C8SC02990C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Song C, Ma X, Schmitz AD, Schobert HH (1999) Shape-selective isopropylation of naphthalene over mordenite catalysts: Computational analysis using MOPAC. Appl Catal A 182(1):175–181. https://doi.org/10.1016/S0926-860X(99)00008-3

    Article  CAS  Google Scholar 

  18. Kassaee MH, Keffer DJ, Steele WV (2007) Theoretical calculation of thermodynamic properties of naphthalene, methylnaphthalenes, and dimethylnaphthalenes. J Chem Eng Data 52(5):1843–1850. https://doi.org/10.1021/je700196j

    Article  CAS  Google Scholar 

  19. Lima DR, de Aguiar Filho SQ, do Oh LBC, dos Santos Pereira AK, Pereira DH (2020) Theoretical study of internal rotational barriers of electrons donating and electrons withdrawing groups in aromatic compounds. Heliyon 6(9). https://doi.org/10.1016/j.heliyon.2020.e04957

  20. Krisyuk BE, Sypko TM (2020) Effect of Substituents on the Energy Barrier of Internal Rotation in Aminonitroethylenes. Russ J Appl Chem 93:897–904. https://doi.org/10.1134/S1070427220060178

    Article  CAS  Google Scholar 

  21. Meinnel JJ, Boudjada A, Boucekkine A, Boudjada F, Moréac A, Parker SF (2008) Vibrational spectra of triiodomesitylene: combination of DFT calculations and experimental studies Effects of the environment. J Phys Chem A 112(44):11124–11141. https://doi.org/10.1021/jp802621w

    Article  CAS  PubMed  Google Scholar 

  22. Boukaoud A, Meinnel J, Boudjada A, Juranyi F, Carlile CJ, Jeannin O (2011) Inelastic neutron scattering of methyl tunnelling in isotopic mixtures of dibromomesitylene. Chem Phys Lett 509(1–3):20–24. https://doi.org/10.1016/j.cplett.2011.04.069

    Article  ADS  CAS  Google Scholar 

  23. Popoola SA, Al-Harbi MH, Al-Rashidi AH, Almarwani MS, Almohammedi AR, Logunleko AO, Al-Saadi AA (2020) DFT evaluation of the effects of OH, NH2 and Br substituents on the properties of 2, 2′-bipyridine derivatives. J Taibah Univ Sci 14(1):1527–1537. https://doi.org/10.1080/16583655.2020.1843872

    Article  Google Scholar 

  24. Benaissa M, Boukaoud A, Sebbar D, Chiba Y, Krid A (2024) Periodic and non-periodic DFT studies of an organic semiconductor material: Structural, electronic, optical, and vibrational properties of ninhydrin. Spectrochim Acta Part A Mol Biomol Spectrosc 307:123636. https://doi.org/10.1016/j.saa.2023.123636

    Article  CAS  Google Scholar 

  25. Novak P, Vikić-Topić D, Meić Z, Sekus̆ak S, Sabljić A (1995) Investigation of hydrogen bond structure in benzoic acid solutions. J Mol Struct 356(2):131–141. https://doi.org/10.1016/0022-2860(95)08939-S

    Article  ADS  CAS  Google Scholar 

  26. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

    Article  ADS  CAS  Google Scholar 

  27. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785. https://doi.org/10.1103/PhysRevB.37.785

    Article  ADS  CAS  Google Scholar 

  28. Grossman EF, Daramola DA, Botte GG (2021) Comparing B3LYP and B97 Dispersion-corrected Functionals for Studying Adsorption and Vibrational Spectra in Nitrogen Reduction. ChemistryOpen 10(3):316–326. https://doi.org/10.1002/open.202000158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhu S, Li H, Zhu W, Jiang W, Wang C, Wu P., ... Li H (2016) Vibrational analysis and formation mechanism of typical deep eutectic solvents: An experimental and theoretical study. J Mol Graph Model 68:158–175. https://doi.org/10.1016/j.jmgm.2016.05.003

  30. Brogli F, Heilbronner E, Kobayashi T (1972) Photoelectron Spektra of Azabenzenes and Azanaphthalenes: II. A Reinvestigation of Azanaphthalenes by High-Resolution Photoelectron Spectroscopy. Helv Chim Acta 55(1):274–288. https://doi.org/10.1002/hlca.19720550131

    Article  CAS  Google Scholar 

  31. Lyapustina SA, Xu S, Nilles JM, Bowen KH Jr (2000) Solvent-induced stabilization of the naphthalene anion by water molecules: A negative cluster ion photoelectron spectroscopic study. J Chem Phys 112(15):6643–6648. https://doi.org/10.1063/1.481237

    Article  ADS  CAS  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2010) Gaussian 09, Revision B.01. Gaussian Inc, Wallingford

  33. Dennington R, Keith TA, Millam JM (2016) GaussView 6.0. 16. Semichem Inc, Shawnee Mission, KS, USA, pp 143–150

    Google Scholar 

  34. Govindarajan M, Karabacak M (2013) FT-IR, FT-Raman and UV spectral investigation: Computed frequency estimation analysis and electronic structure calculations on 1-bromo-2-methylnaphthalene. Spectrochim Acta Part A Mol Biomol Spectrosc 101:314–324. https://doi.org/10.1016/j.saa.2012.09.099

    Article  ADS  CAS  Google Scholar 

  35. Bent HA (1960) Correlation of Bond Shortening by Electronegative Substituents with orbital hybridization. J Chem Phys 33(4):1259–1260. https://doi.org/10.1063/1.1731374

    Article  ADS  CAS  Google Scholar 

  36. Domenicano A, Vaciago A, Coulson CA (1975) Molecular geometry of substituted benzene derivatives. I. On the nature of the ring deformations induced by substitution. Acta Crystallogr Sect B: Struct Crystallogr Cryst Chem 31(1):221–234. https://doi.org/10.1107/S0567740875002397

    Article  ADS  Google Scholar 

  37. Jaffe HH (1952) Theoretical Considerations Concerning Hammett’s Equation. II. Calculation of σ-Values for Toluene and Naphthalene. J Chem Phys 20(5):778–780. https://doi.org/10.1063/1.1700566

    Article  ADS  MathSciNet  CAS  Google Scholar 

  38. Chanh NB, Haget Y, Leroy F, Hannoteaux F (1973) Polymorphisme et structure cristalline de la forme métastable à 25° C du 2-bromonaphthalène. Acta Crystallogr Sect B: Struct Crystallogr Cryst Chem 29(7):1469–1473. https://doi.org/10.1107/S0567740873004747

    Article  ADS  CAS  Google Scholar 

  39. Pegu D, Deb J, Van Alsenoy C, Sarkar U (2017) Theoretical investigation of electronic, vibrational, and nonlinear optical properties of 4-fluoro-4-hydroxybenzophenone. Spectrosc Lett 50(4):232–243. https://doi.org/10.1080/00387010.2017.1308381

    Article  ADS  CAS  Google Scholar 

  40. Zaier R, Ayachi S (2021) Toward designing new cyclopentadithiophene-naphthalene derivatives based small molecules for organic electronic applications: A theoretical investigation. Mater Today Commun 27:102370. https://doi.org/10.1016/j.mtcomm.2021.102370

    Article  CAS  Google Scholar 

  41. Braun CL, Dobbs GM (1970) Intrinsic photoconductivity in naphthalene single crystals. J Chem Phys 53(7):2718–2725. https://doi.org/10.1063/1.1674395

    Article  ADS  CAS  Google Scholar 

  42. Chen D, Wang H (2019) HOMO-LUMO energy splitting in polycyclic aromatic hydrocarbons and their derivatives. Proc Combust Inst 37(1):953–959. https://doi.org/10.1016/j.proci.2018.06.120

    Article  CAS  Google Scholar 

  43. Zhan CG, Nichols JA, Dixon DA (2003) Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: molecular properties from density functional theory orbital energies. J Phys Chem A 107(20):4184–4195. https://doi.org/10.1021/jp0225774

    Article  CAS  Google Scholar 

  44. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105(26):7512–7516. https://doi.org/10.1021/ja00364a005

    Article  CAS  Google Scholar 

  45. Goclon J, Winkler K (2018) Band gap tuning in composites of polypyrrole derivatives and C60Pd3 polymer as models for p–n junction: a first principle computational study. ChemistrySelect 3(2):373–383. https://doi.org/10.1002/slct.201702752

    Article  CAS  Google Scholar 

  46. Pranowo HD, Mulya F, Aziz HA, Santoso GA (2018) Study of substituent effect on properties of Platinum (II) porphyrin semiconductor using density functional theory. Indones J Chem 18(4):742–748. https://doi.org/10.22146/IJC.26121

    Article  CAS  Google Scholar 

  47. Utsunomiya C, Kobayashi T, Nagakura S (1975) Photoelectron spectra of substituted naphthalenes. Bull Chem Soc Jpn 48(6):1852–1856. https://doi.org/10.1246/bcsj.48.1852

    Article  CAS  Google Scholar 

  48. El Adnani Z, Mcharfi M, Sfaira M, Benzakour M, Benjelloun AT, Touhami ME (2013) DFT theoretical study of 7-R-3methylquinoxalin-2 (1H)-thiones (RH; CH3; Cl) as corrosion inhibitors in hydrochloric acid. Corros Sci 68:223–230. https://doi.org/10.1016/j.corsci.2012.11.020

    Article  CAS  Google Scholar 

  49. Dutta B, Bhattacharjee B, Chowdhury J (2018) Physics behind the Barrier to Internal Rotation of an Acetyl Chloride Molecule: A Combined Approach from Density Functional Theory, Car-Parrinello Molecular Dynamics, and Time-Resolved Wavelet Transform Theory. ACS Omega 3(6):6794–6803. https://doi.org/10.1021/acsomega.8b00316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tan XQ, Majewski WA, Plusquellic DF, Pratt DW (1991) Methyl group torsional dynamics from rotationally resolved electronic spectra. 1-and 2-methylnaphthalene. J Chem Phys 94(12):7721–7733. https://doi.org/10.1063/1.460158

    Article  ADS  CAS  Google Scholar 

  51. Ogruc Ildiz G, Fausto R (2020) Structural aspects of the ortho chloro-and fluoro-substituted benzoic acids: implications on chemical properties. Molecules 25(21):4908. https://doi.org/10.3390/molecules25214908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Berden G, Meerts WL, Plusquellic DF, Fujita I, Pratt DW (1996) High resolution electronic spectroscopy of 1-aminonaphthalene: S 0 and S 1 geometries and S 1← S 0 transition moment orientations. J Chem Phys 104(11):3935–3946. https://doi.org/10.1063/1.471160

    Article  ADS  CAS  Google Scholar 

  53. Larsen NW, Hansen EL, Nicolaisen FM (1976) Far infrared investigation of aniline and 4-fluoroaniline in the vapour phase. Inversion and torsion of the amino group. Chem Phys Lett 43(3):584–586. https://doi.org/10.1016/0009-2614(76)80629-X

    Article  ADS  CAS  Google Scholar 

  54. Lin Z, Liu X, Zhang W, Huang J, Wang Q, Shi K., ... Yu G (2018) Cyanostyrylthiophene-based ambipolar conjugated polymers: Synthesis, properties, and analyses of backbone fluorination effect. Macromolecules 51(3):966–976. https://doi.org/10.1021/acs.macromol.7b02401

  55. Jaman AI, Kumar PH, Bangal PR (2011) Millimeter-Wave Rotational Spectrum, Barrier to Internal Rotation, and DFT Calculation of o-Tolunitrile. J Atom Mol Phys 2011. https://doi.org/10.1155/2011/480396

  56. Boukaoud A, Chiba Y, Sebbar D (2021) A periodic DFT study of IR spectra of amino acids: An approach toward a better understanding of the NH and OH stretching regions. Vib Spectrosc 116:103280. https://doi.org/10.1016/j.vibspec.2021.103280

    Article  CAS  Google Scholar 

  57. Boukaoud A, Chiba Y, Sebbar D, Dehbaoui M, Guechi N (2021) A Theoretical Study of Vibrational and Optical Properties of Isatin. Braz J Phys 51(4):1207–1214. https://doi.org/10.1007/s13538-021-00924-5

    Article  ADS  CAS  Google Scholar 

  58. Mineva T, Heine T (2004) Efficient computation of density-functional orbitally resolved reactivity indices. J Phys Chem A 108(50):11086–11091. https://doi.org/10.1021/jp048000z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is a part of the Algerian PRFU project (2021-2022: No. B00L02UN260120220001). The authors acknowledge the Directorate-General for Scientific Research and Technological Development (DGRSDT) for providing the support and assistance during this work. The Algerian Ministry of Higher Education and Scientific Research is also highly acknowledged.

Funding

This work is financed by the Algerian Directorate-General for Scientific Research and Technological Development (DGRSDT).

Author information

Authors and Affiliations

Authors

Contributions

A.B. wrote the main manuscript and investigation. A.B. wrote the main manuscript and investigation. A.R. investigation. A.K. investigation

Corresponding author

Correspondence to Abdelali Boukaoud.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Supplementary file2 (MP4 5028 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benalia, A., Boukaoud, A., Amrani, R. et al. A B3LYP-D3 computational study of electronic, structural and torsional dynamic properties of mono-substituted naphthalenes: the effect of the nature and position of substituent. J Mol Model 30, 88 (2024). https://doi.org/10.1007/s00894-024-05884-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-024-05884-6

Keywords

Navigation