Skip to main content
Log in

Exceptional bifurcated chalcogen bonding interaction between Ph2N2O2 and only one σ–hole on XCY (X=S, Se, Te and Y=O, S, Se, Te): a DFT study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Quantum chemical calculations are performed to study the bifurcated chalcogen bonding (BCB) interactions in Ph2N2O2…XCY (X=S, Se, Te and Y=O, S, Se, Te) complexes. The interaction of the only one σ-hole on X atom with two negative regions, which leads to BCB interactions, is exceptionally remarkable. The nature of the BCB interactions is probed by a variety of means, including electrostatic potentials, AIM, NBO, energy decomposition and electron density differences maps. The EDA analysis reveals that the dominant attractive force in X…O chalcogen bonded complexes is the electrostatic energy. The interaction energy values, obtained using the QTAIM-based Espinosa’s approach, provide a relatively distinguishable result than DFT method and EDA analysis reported in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Clark T (2013) σ-hole. WIREs Comput Mol Sci 3:13–20

    CAS  Google Scholar 

  2. Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: the σ-hole. J Mol Model 13:291–296

    CAS  PubMed  Google Scholar 

  3. Politzer P, Murray JS, Clark T (2013) Halogen bonding and other σ-hole interactions: a perspective. Phys Chem Chem Phys 15:11178–11190

    CAS  PubMed  Google Scholar 

  4. Murray JS, Lane P, Politzer P (2009) Expansion of the σ-hole concept. J Mol Model 15:723–729

    CAS  PubMed  Google Scholar 

  5. Murray JS, Lane P, Clark T, Politzer P (2007) σ-Hole bonding: molecules containing group VI atoms. J Mol Model 13:1033–1038

    CAS  PubMed  Google Scholar 

  6. Murray JS, Lane P, Politzer P (2007) A predicted new type of directional noncovalent interaction. Int J Quant Chem 107:2286–2292

    CAS  Google Scholar 

  7. Wang W, Ji B, Zhang Y (2009) Chalcogen bond: a sister noncovalent bond to halogen bond. J Phys Chem A 113:8132–8135

    PubMed  Google Scholar 

  8. Nziko VPN, Scheiner S (2014) chalcogen bonding between tetravalet SF4 and amines. J Phys Chem A 118:10849–10856

    CAS  Google Scholar 

  9. Oliveira VP, Cremer D, Kraka E (2017) The many facets of chalcogen bonding described by vibrational spectroscopy. J Phys Chem A 121:6845–6862

    CAS  PubMed  Google Scholar 

  10. Sanz P, Yáñez M, Mó O (2002) Competition between X···H···Y intramolecular hydrogen bonds and X····Y (X = O, S, and Y = Se, Te) chalcogen−chalcogen interactions. J Phys Chem A 106:4661–4668

    CAS  Google Scholar 

  11. Sanz P, Yáñez M, Mó O (2003) Resonance-assisted intramolecular chalcogen–chalcogen interactions? Chem Eur J 9:4548–4555

    CAS  PubMed  Google Scholar 

  12. Alkorta I, Elguero J, Del Bene JE (2018) Complexes of O=C=S with nitrogen bases: chalcogen bonds, tetrel bonds, and other secondary interactions. Chem Phys Chem 19:1886–1894

    CAS  Google Scholar 

  13. Wang H, Liu J, Wang W (2018) Intermolecular and very strong intramolecular C-Se…O/N chalcogen bonds in nitroPhenyl selenocyanate crystals. Phys Chem Chem Phys 20:5227–5234

    CAS  PubMed  Google Scholar 

  14. Pascoe DJ, Ling KB, Cockroft SL (2017) The origin of chalcogen-bonding interactions. J Am Chem Soc 139:15160–15167

    CAS  PubMed  Google Scholar 

  15. Li QZ, Li R, Guo P, Li H, Li WZ, Cheng JB (2012) Competition of chalcogen bond, halogen bond, and hydrogen bond in SCS-HOX and SeCSe-HOX (X = Cl and Br) complexes. Comput Theor Chem 980:56–61

    CAS  Google Scholar 

  16. Zhang Y, Wang WZ (2018) Pseudo-bifurcated chalcogen bond in crystal engineering. Crystals 8:163–171

    Google Scholar 

  17. Nayak SK, Kumar V, Murray JS, Politzer P, Terraneo G, Pilati T, Metrangolo P, Resnati G (2017) Fluorination promotes chalcogen bonding in crystalline solids. Cryst Eng Comm 19:4955–4959

    CAS  Google Scholar 

  18. Mikherdov AS, Novikov AS, Kinzhalov MA, Zolotarev AA, Boyarskiy VP (2018) Intra-/intermolecular bifurcated chalcogen bonding in crystal structure of thiazole/thiadiazole derived binuclear (diaminocarbene)PdII complexes. Crystals 8:112–127

    Google Scholar 

  19. Bora PL, Novák M, Novotný J, Foroutan-Nejad C, Marek R (2017) Supramolecular covalence in bifurcated chalcogen bonding. Chem Eur J 23:7315–7323

    CAS  PubMed  Google Scholar 

  20. Bhandary S, Sirohiwal A, Kadu R, Kumar S, Chopra D (2018) Dispersion stabilized Se/Te…π double chalcogen bonding synthonsin insitu cryocrystallized divalent organochalcogen liquids. Cryst Growth Des 18:3734–3739

    CAS  Google Scholar 

  21. Vančik H (2013) Aromatic C-nitroso compounds. Springer, New York

    Google Scholar 

  22. Yamamoto H, Momiyama N (2005) Rich chemistry of nitroso compounds. Chem Commun 28:3514–3525

    Google Scholar 

  23. Carosso S, Miller MJ (2014) Nitroso Diels–Alder (NDA) reaction as an efficient tool for the functionalization of diene-containing natural products. Org Biomol Chem 12:7445–7468

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Yamamoto H, Kawasaki M (2007) Nitroso and azo compounds in modern organic synthesis: late blooming but very rich. Bull Chem Soc Jpn 80:595–607

    CAS  Google Scholar 

  25. Peng L, Turesky RJ (2014) Optimizing proteolytic digestion conditions for the analysis of serum albumin adducts of 2-amino-1-methyl-6-Phenylimidazo[4,5-b]pyridine, a potential human carcinogen formed in cooked meat. J Proteomics 103:267–278

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Trefzer C, Rengifo-Gonzalez M, J. Hinner M, Schneider P, et al (2010) Benzothiazinones: prodrugs that covalently modify the decaprenylPhosPhoryl-β-d-ribose 2′-epimerase DprE1 of mycobacterium tuberculosis. J Am Chem Soc 132:13663–13665

    CAS  PubMed  Google Scholar 

  27. Liu L, Wagner CR, Hanna PE (2009) Isoform-selective inactivation of human arylamine N-acetyltransferases by reactive metabolites of carcinogenic arylamines. Chem Res Toxicol 22:1962–1974

    CAS  PubMed  Google Scholar 

  28. Hawkins CL, Davies MJ (2014) Detection and characterisation of radicals in biological materials using EPR methodology. Biochim BioPhys Acta Gen Subj 1840:708–721

    CAS  Google Scholar 

  29. Piloty O (1898) Ueber aliphatische nitrosoverbindunge. Ber Dtsch Chem Ges 31:452–457

    CAS  Google Scholar 

  30. Beaudoin D, Wuest JD (2016) Dimerization of aromatic C-Nitroso compounds. Chem Rev 116:258–286

    CAS  PubMed  Google Scholar 

  31. Esrafili MD, Mohammadian-Sabet F (2015) Bifurcated chalcogen bonds: a theoretical study on the structure, strength and bonding properties. Chem Phys Lett 634:210–215

    CAS  Google Scholar 

  32. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    CAS  Google Scholar 

  33. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 Revision A.02. Gaussian Inc, Wallingford

    Google Scholar 

  34. Bulat FA, Toro-Labbe A, Brinck T, Murray JS, Politzer P (2010) Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J Mol Model 16:1679–1691

    CAS  PubMed  Google Scholar 

  35. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, New York

    Google Scholar 

  36. Biegler-Konig F, Schonbohm J (2002) AIM 2000 Program Package, Ver.2.0, University of Applied Sciences, Bielefield, Germany

  37. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    CAS  Google Scholar 

  38. ADF2013, SCM, Theoretical chemistry; Vrije Universiteit: Amsterdam, The Netherlands. Available at: https://www.scm.com

  39. E-van L, Baerends EJ, Snijders JG (1993) Relativistic regular two-component hamiltonians. J Chem Phys 99:4597–4610

    Google Scholar 

  40. E-van L, R-van L, Baerends EJ, Snijders JG (1996) Relativistic regular two-component hamiltonians. Int J Quantum Chem 57:281–293

    Google Scholar 

  41. Dieterich DA, Paul IC, Curtin DY (1974) Structural studies on nitrosobenzene and 2-nitrosobenzoic acid. Crystal and molecular structures of cis-azobenzene dioxide and trans-2,2-dicarboxyazobenzene dioxide. J Am Chem Soc 96:6372–6380

    CAS  Google Scholar 

  42. Vleeschouwer FD, Denayer M, Pinter B, Geerlings P, Proft FD (2017) Characterization of chalcogen bonding interactions via an in-depth conceptual quantum chemical analysis. J Comput Chem 39:557–572

    PubMed  Google Scholar 

  43. Esrafili MD, Mohammadian-Sabet F (2015) Does single-electron chalcogen bond exist? Some theoretical insights. J Mol Model 21:65–73

    PubMed  Google Scholar 

  44. Koch U, Popelier PLA (1995) Characterization of CHO hydrogen bonds on the basis of the charge density. J Phys Chem 99:9747–9754

    CAS  Google Scholar 

  45. Rozas I, Alkorta I, Elguero J (1998) Non-conventional hydrogen bonds. Chem Soc Rev 27:163–170

    Google Scholar 

  46. Del Bene JE, Alkorta I, Sanchez-Sanz G, Elguero J (2011) 31P–31P spin–spin coupling constants for pnicogen homodimers. Chem Phys Lett 512:184–187

    Google Scholar 

  47. Gue X, Liu Y-W, Li Q-Z, Li W-Z, Cheng J-B (2015) Competition and cooperativity between tetrel bond and chalcogen bond in complexes involving F2CX (X = Se and Te). Chem Phys Lett 620:7–12

    Google Scholar 

  48. Brezgunova M (2013) Charge density analysis and topological properties of weak intermolecular interactions–halogen and chalcogen bonding–and their comparison with hydrogen bonding. University of Lorraine, Nancy

    Google Scholar 

  49. Wang Y, Zhang Y, Xu Z, Tong J, Teng W, Lu Y (2017) Intramolecular C–S…O=S(C) chalcogen bonds: a theoretical study of the effects of substituents and intermolecular hydrogen bonds. Comput Theor Chem 1115:190–196

    CAS  Google Scholar 

  50. Espinosa E, Molins E (2000) Retrieving interaction potentials from the topology of the electron density distribution: the case of hydrogen bonds. J Chem Phys 113:5686–5694

    CAS  Google Scholar 

  51. Espinosa E, Molins E, Lecomte C (1998) Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densitie. Chem Phys Lett 285:170–173

    CAS  Google Scholar 

  52. Espinosa E, Alkorta I, Rozas I, Elguero J, Molins E (2001) About the evaluation of the local kinetic, potential and total energy densities in closed-shell interactions. Chem Phys Lett 336:457–461

    CAS  Google Scholar 

  53. Blanco F, Kelly B, Sánchez-Sanz G, Trujillo C, Alkorta I, Elguero J, Rozas I (2013) Non-covalent interactions: complexes of guanidinium with DNA and RNA nucleobases. J Phys Chem B 117:11608–11616

    CAS  PubMed  Google Scholar 

  54. Esrafili MD, Mohammadian-Sabet F (2015) An ab initio study on chalcogen–chalcogen bond interactions in cyclic (SHX)3 complexes (X = F, Cl, CN, NC, CCH, OH, OCH3, NH2). Chem Phys Lett 628:71–75

    CAS  Google Scholar 

  55. Harrison JF (2003) On the role of the electron density difference in the interpretation of molecular properties. J Chem Phys 119:8763–8764

    CAS  Google Scholar 

  56. Foster JP, Weinhold F (1980) Natural hybrid orbitals. J Am Chem Soc 102:7211–7218

    CAS  Google Scholar 

  57. Glendening ED, Landis CR, Weinhold F (2012) Natural bond orbital methods. WIREs, Comput Mol Sci 2:1–42

    CAS  Google Scholar 

  58. Ziegler T, Rauk A (1979) A theoretical study of the ethylene-metal bond in complexes between copper(1+), silver(1+), gold(1+), platinum(0) or platinum(2+) and ethylene, based on the Hartree-Fock-Slater transition-state method. Inorg Chem 18:1558–1565

    CAS  Google Scholar 

Download references

Acknowledgements

S.M. wishes to acknowledge Dr. M. Bayat, Bu-Ali Sina University, for supporting this research by ADF.2013.01 program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shokofeh Massahi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 99 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Massahi, S., Ghobadi, M. & Nikoorazm, M. Exceptional bifurcated chalcogen bonding interaction between Ph2N2O2 and only one σ–hole on XCY (X=S, Se, Te and Y=O, S, Se, Te): a DFT study. Theor Chem Acc 139, 162 (2020). https://doi.org/10.1007/s00214-020-02669-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02669-x

Keywords

Navigation