Skip to main content
Log in

Theoretical investigation on the atmospheric fate of CF3C(O)OCH2O radical: alpha-ester rearrangement vs oxidation at 298 K

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A theoretical study on the mechanism of the thermal decomposition of CF3C(O)OCH2O radical is presented for the first time. Geometry optimization and frequency calculations were performed at the MPWB1K/6–31 + G(d, p) level of theory and energetic information further refined by calculating the energy of the species using G2(MP2) theory. Three plausible decomposition pathways including α-ester rearrangement, reaction with O2 and thermal decomposition (C–O bond scission) were considered in detail. Our results reveal that reaction with O2 is the dominant path for the decomposition of CF3C(O)OCH2O radical in the atmosphere, involving the lowest energy barrier, which is in accord with experimental findings. Our theoretical results also suggest that α-ester rearrangement leading to the formation of trifluoroacetic acid TFA makes a negligible contribution to decomposition of the title alkoxy radical. The thermal rate constants for the above decomposition pathways were evaluated using canonical transition state theory (CTST) at 298 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Molina MJ, Rowland FS (1974) Nature 249:810–814

    Article  CAS  Google Scholar 

  2. Farman JD, Gardiner BG, Shanklin JD (1985) Nature 315:207–210

    Article  CAS  Google Scholar 

  3. Powell RL (2002) J Fluor Chem 114:237–250

    Article  CAS  Google Scholar 

  4. Sekiya A, Misaki S (2000) J Fluor Chem 101:215–221

    Article  CAS  Google Scholar 

  5. Ravishankara RA, Turnipseed AA, Jensen NR, Barone S, Mills M, Howark CJ, Solomon S (1994) Science 263:71–75

    Article  CAS  Google Scholar 

  6. Bravo I, Dıaz-de-Mera Y, Aranda A, Moreno E, Nutt DR, Marston G (2011) Phys Chem Chem Phys 13:17185–17193

    Article  CAS  Google Scholar 

  7. Chen L, Kutsuna S, Tokuhashi K, Sekiya A, Tamai R, Hibino Y (2005) J Phys Chem A 109:4766–4771

    Article  CAS  Google Scholar 

  8. Jordan A, Frank H (1999) Environ Sci Technol 33(4):522–527

    Article  CAS  Google Scholar 

  9. Blanco MB, Teruel MA (2007) Atmos Environ 41(34):7330–7338

    Article  CAS  Google Scholar 

  10. Blanco MB, Bejan I, Barnes I, Wiesen P, Teruel MA (2008) Chem Phys Lett 453:18–23

    Article  CAS  Google Scholar 

  11. Blanco MB, Bejan I, Barnes I, Wiesen P, Teruel MA (2010) Environ Sci Technol 44:2354–2359

    Article  CAS  Google Scholar 

  12. Stein TNN, Christensen LK, Platz J, Sehested J, Nielsen OJ, Wallington TJ (1999) J Phys Chem A 103:5705–5713

    Article  CAS  Google Scholar 

  13. Blanco MB, Barnes I, Teruel MA (2010) J Phys Org Chem 23:950–954

    Article  CAS  Google Scholar 

  14. Blanco MB, Rivela C, Teruel MA (2013) Chem Phys Lett 578:33–37

    Article  CAS  Google Scholar 

  15. Mishra BK, Chakrabatty AK, Deka RC (2014) Struct Chem 25:463–470

    Article  CAS  Google Scholar 

  16. Chakrabatty AK, Mishra BK, Bhattacharjee D, Deka RC (2013) Mol Phys 111:860–867

    Article  Google Scholar 

  17. Mishra BK, Chakrabatty AK, Deka RC (2013) J Mol Model 19:2189–2195

    Article  CAS  Google Scholar 

  18. Singh HJ, Tiwari L, Rao PK (2014) Mol Phys 112:1892–1898

    Article  CAS  Google Scholar 

  19. Gour NK, Deka RC, Singh HJ, Mishra BK (2014) J Fluor Chem 160:64–71

    Article  CAS  Google Scholar 

  20. Orlando JJ, Tyndall GS, Wallington TJ (2003) Chem Rev 103:4657–4689

    Article  CAS  Google Scholar 

  21. Vereecken L, Francisco JS (2012) Chem Soc Rev 41:6259–6293

    Article  CAS  Google Scholar 

  22. Mishra BK, Lily M, Chakrabartty AK, Bhattacharjee D, Deka RC, Chandra AK (2014) New J Chem 38:2813–2822

    Article  CAS  Google Scholar 

  23. Lily M, Mishra BK, Chandra AK (2014) J Fluor Chem 161:51–59

    Article  CAS  Google Scholar 

  24. Mishra BK, Lily M, Deka RC, Chandra AK (2014) J Mol Graph Model 50:90–99

    Article  CAS  Google Scholar 

  25. Henon E, Bohr F, Gomex NS, Caralp F (2003) Phys Chem Chem Phys 5:5431–5437

    Article  CAS  Google Scholar 

  26. Singh HJ, Mishra BK, Gour NK (2010) Theor Chem Acc 125:57–64

    Article  CAS  Google Scholar 

  27. Singh HJ, Mishra BK, Rao PK (2012) Can J Chem 90:403–409

    Article  CAS  Google Scholar 

  28. Singh HJ, Mishra BK (2011) J Chem Sci 123:733–741

    Article  CAS  Google Scholar 

  29. Ferenac MA, Davis AJ, Holloway AS, Dibble TS (2003) J Phys Chem A 107:63–72

    Article  CAS  Google Scholar 

  30. Rayez MT, Picquet-Varrault B, Caralp F, Rayez JC (2002) Phys Chem Chem Phys 4:5789–5794

    Article  CAS  Google Scholar 

  31. Singh HJ, Mishra BK, Rao PK (2009) Bull Korean Chem Soc 30(12):2973–2978

    Article  CAS  Google Scholar 

  32. Zhao Y, Truhlar DG (2004) J Phys Chem A 108:6908–6918

    Article  CAS  Google Scholar 

  33. Devi KJ, Chandra AK (2011) Chem Phys Lett 502:23–28

    Article  Google Scholar 

  34. Zeegers-Huyskens T, Lily M, Sutradhar D, Chandra AK (2013) J Phys Chem A 117:8010–8016

    Article  CAS  Google Scholar 

  35. Chakrabartty AK, Mishra BK, Bhattacharjee D, Deka RC (2013) J Fluor Chem 154:60–66

    Article  CAS  Google Scholar 

  36. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  37. Curtiss LA, Raghavachari K, Pople JA (1993) J Chem Phys 98:1293–1298

    Article  CAS  Google Scholar 

  38. Mishra BK, Lily M, Chakrabartty AK, Deka RC, Chandra AK (2014) J Fluor Chem 159:57–64

    Article  CAS  Google Scholar 

  39. Deka RC, Mishra BK (2014) Chem Phys Lett 595:43–47

    Article  Google Scholar 

  40. Lily M, Sutradhar D, Chandra AK (2013) Comp Theor Chem 1022:50–58

    Article  CAS  Google Scholar 

  41. Chandra AK (2012) J Mol Model 18:4239–4247

    Article  CAS  Google Scholar 

  42. Mishra BK (2014) RSC Adv 4:16759–16764

    Article  CAS  Google Scholar 

  43. Frisch MJ et al (2009) GAUSSIAN 09 (Revision B.01). Gaussian Inc, Wallingford, CT

  44. Laidler KJ (2004) Chemical kinetics, 3rd edn. Pearson Education, New Delhi

    Google Scholar 

  45. Chuang YY, Truhlar DG (2000) J Chem Phys 112:1221–1228

    Article  CAS  Google Scholar 

  46. Brown RL (1981) J Res Natl Bur Stand 86:357–359

    Article  CAS  Google Scholar 

  47. Xiao R, Noerpel M, Luk HL, Wei Z, Spinney R (2014) Int J Quant Chem 114:74–83

    Article  CAS  Google Scholar 

Download references

Acknowledgments

B.K.M. acknowledges financial support from University Grants Commission, New Delhi in form of a UGC-Dr. D.S. Kothari Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhupesh Kumar Mishra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, B.K. Theoretical investigation on the atmospheric fate of CF3C(O)OCH2O radical: alpha-ester rearrangement vs oxidation at 298 K. J Mol Model 20, 2444 (2014). https://doi.org/10.1007/s00894-014-2444-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2444-9

Keywords

Navigation