Skip to main content
Log in

Theoretical investigation on mechanism and kinetics of the Cl-initiated hydrogen abstraction reactions of ethyl trifluoroacetate at 298 K

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Theoretical investigations were carried out on the gas-phase reactions of CF3C(O)OCH2CH3, ethyl trifluoroacetate (ETFA) with Cl atoms by means of modern density functional theory methods. The optimized geometries, frequencies and minimum energy path were obtained with the hybrid density functional model MPWB1K using the 6-31+G(d,p) basis set. The single point energy calculations were refined further using the G2(MP2) method. Two conformers relatively close in energy were identified for ETFA; both are likely to be important in the temperature range of our study. The existence of transition states on the corresponding potential energy surface was ascertained by performing intrinsic reaction coordinate calculations. The rate constant at 298 K calculated theoretically using canonical transition state theory was found to be in good agreement with experimentally measured values. Our calculations suggest that H abstraction from the –CH2 group is kinetically and thermodynamically more favorable than abstraction from the –CH3 group. The atmospheric lifetime of ETFA with Cl atoms was determined to be 1.98 years. To the best of our knowledge, this work represents the first determination of the rate coefficients for the gas-phase reaction of chlorine atoms in ETFA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tsai WT (2005) J Hazard Mater 119:69–78

    Article  CAS  Google Scholar 

  2. Sekiya A, Misaki S (2000) J Fluorine Chem 101:215–221

    Article  CAS  Google Scholar 

  3. Powell RL (2002) J Fluor Chem 114:237–250

    Article  CAS  Google Scholar 

  4. Bravo I, Dıaz-de-Mera Y, Aranda A, Moreno E, Nutt DR, Marston G (2011) Phys Chem Chem Phys 13:17185–17193

    Article  CAS  Google Scholar 

  5. Ninomiya Y, Kawasaki M, Guschin A, Molina LT, Molina MJ, Wallington TJ (2000) Environ Sci Technol 34(14):2973–2978

    Article  CAS  Google Scholar 

  6. Nohara K, Toma M, Kutsuna S, Takeuchi K, Ibusuki T (2001) Environ Sci Technol 35(1):114–120

    Article  CAS  Google Scholar 

  7. Wallington TJ, Schneider WF, Sehested J, Bilde M, Platz J, Nielsen OJ, Christensen LK, Molina MJ, Molina LT, Wooldridge PW (1997) J Phys Chem A 101:8264–8274

    Article  CAS  Google Scholar 

  8. Chen L, Kutsuna S, Tokuhashi K, Sekiya A (2004) Int J Chem Kinet 36(6):337–344

    Article  CAS  Google Scholar 

  9. Mera YD, Aranda A, Bravo I, Moreno E, Martinez E, Rodriguez A (2009) Chem Phys Lett 479:20–24

    Article  Google Scholar 

  10. Tiu GC, Fu-Ming T (2006) Chem Phys Lett 428:42–48

    Article  CAS  Google Scholar 

  11. Wingenter OW, Kubo MK, Blake NJ, Smith TW, Blake DR, Rowland FS (1996) J Geophys Res 101:4331–4340

    Article  CAS  Google Scholar 

  12. Zierkiewicz W (2013) Chem Phys Lett 555:72–78

    Article  CAS  Google Scholar 

  13. Lu W, Xie K, Chen Z, Pan Y, Zheng C (2014) J Fluor Chem 161:110–119

    Article  CAS  Google Scholar 

  14. Nakajima T, Dan K, Koh M (1998) J Fluor Chem 87:221–227

    Article  CAS  Google Scholar 

  15. Chandrasekaran R, Koh M, Ozhawa Y, Aoyoma H, Nakajima T (2009) J Chem Sci 121:339–346

    Article  CAS  Google Scholar 

  16. Zhao L, Okada S, Yamaki J (2013) J Power Sources 244:369–374

    Article  CAS  Google Scholar 

  17. Lu W, Xie K, Pan Y, Chen Z, Zheng C (2013) J Fluor Chem 156:136–143

    Article  CAS  Google Scholar 

  18. Yamakia JI, Yamasaki I, Egashira M, Okada S (2001) J Power Sources 102:288–293

    Article  Google Scholar 

  19. Jordan A, Frank H (1999) Environ Sci Technol 33(4):522–527

    Article  CAS  Google Scholar 

  20. Blanco MB, Teruel MA (2007) Atmos Environ 41(34):7330–7338

    Article  CAS  Google Scholar 

  21. Blanco MB, Bejan I, Barnes I, Wiesen P, Teruel MA (2008) Chem Phys Lett 453:18–23

    Article  CAS  Google Scholar 

  22. Blanco MB, Bejan I, Barnes I, Wiesen P, Teruel MA (2010) Environ Sci Technol 44:2354–2359

    Article  CAS  Google Scholar 

  23. Stein TNN, Christensen LK, Platz J, Sehested J, Nielsen OJ, Wallington TJ (1999) J Phys Chem A 103:5705–5713

    Article  CAS  Google Scholar 

  24. Blanco MB, Barnes I, Teruel MA (2010) J Phys Org Chem 23:950–954

    Article  CAS  Google Scholar 

  25. Blanco MB, Rivela C, Teruel MA (2013) Chem Phys Lett 578:33–37

    Article  CAS  Google Scholar 

  26. Mishra BK, Chakrabatty AK, Deka RC (2014) Struct Chem 25:463–470

    Article  CAS  Google Scholar 

  27. Chakrabatty AK, Mishra BK, Bhattacharjee D, Deka RC (2013) Mol Phys 111:860–867

    Article  Google Scholar 

  28. Mishra BK, Chakrabatty AK, Deka RC (2013) J Mol Model 19:2189–2195

    Article  CAS  Google Scholar 

  29. Singh HJ, Tiwari L, Rao PK (2014) Bull Korean Chem Soc 35:1385–1390

    Article  CAS  Google Scholar 

  30. Gour NK, Deka RC, Singh HJ, Mishra BK (2014) J Fluor Chem 160:64–71

    Article  CAS  Google Scholar 

  31. Mishra BK (2014) RSC Adv 4:16759–16764

    Article  CAS  Google Scholar 

  32. Zhu P, Ai L-l, Wang H, Liu J-y (2014) Comp Theor Chem 1029:91–98

    Article  CAS  Google Scholar 

  33. Lestard MED, Tuttolomondo ME, Wann DA, Robertson HE, Rankin DWH, Altabef AB (2010) J Raman Spectrosc 41:1357–1368

    Article  CAS  Google Scholar 

  34. Zhao Y, Truhlar DG (2004) J Phys Chem A 108:6908–6918

    Article  CAS  Google Scholar 

  35. Zeegers-Huyskens T, Lily M, Sutradhar D, Chandra AK (2013) J Phys Chem A 117:8010–8016

    Article  CAS  Google Scholar 

  36. Chakrabartty AK, Mishra BK, Bhattacharjee D, Deka RC (2013) J Fluor Chem 154:60–66

    Article  CAS  Google Scholar 

  37. Devi KJ, Chandra AK (2011) Chem Phys Lett 502:23–28

    Article  Google Scholar 

  38. Mishra BK, Lily M, Chakrabartty AK, Deka RC, Chandra AK (2014) J Fluor Chem 159:57–64

    Article  CAS  Google Scholar 

  39. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  40. Curtiss LA, Raghavachari K, Pople JA (1993) J Chem Phys 98:1293–1298

    Article  CAS  Google Scholar 

  41. Mishra BK, Lily M, Deka RC, Chandra AK (2014) J Mol Graph Model 50:90–99

    Article  CAS  Google Scholar 

  42. Deka RC, Mishra BK (2014) Chem Phys Lett 595–596:43–47

    Article  Google Scholar 

  43. Lily M, Sutradhar D, Chandra AK (2013) Comp Theor Chem 1022:50–58

    Article  CAS  Google Scholar 

  44. Chandra AK (2012) J Mol Model 18:4239–4247

    Article  CAS  Google Scholar 

  45. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell K, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, revision B.01. Gaussian Inc, Wallingford

    Google Scholar 

  46. McQuarrie DA (2003) Statistical mechanics. VIVA, New Delhi

    Google Scholar 

  47. Laidler KJ (2004) Chemical kinetics, 3rd edn. Pearson Education, New Delhi

    Google Scholar 

  48. Brown RL (1981) J Res Natl Bur Stand 86:357–359

    Article  CAS  Google Scholar 

  49. Xiao R, Noerpel M, Luk HL, Wei Z, Spinney R (2014) Int J Quantum Chem 114:74–83

    Article  CAS  Google Scholar 

  50. Chuang YY, Truhlar DG (2000) J Chem Phys 112:1221–1228

    Article  CAS  Google Scholar 

  51. Truhlar DG (1991) J Comput Chem 12:266–270

    Article  CAS  Google Scholar 

  52. Kurylo MJ, Orkin VL (2003) Chem Rev 103:5049–5076

    Article  CAS  Google Scholar 

Download references

Acknowledgments

B.K.M. is thankful to University Grants Commission, New Delhi for awarding a Dr. D. S. Kothari Fellowship. The financial assistance provided by the Council of Scientific and Industrial Research (CSIR), New Delhi is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhupesh Kumar Mishra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, B.K., Singh, H.J. & Tiwari, L. Theoretical investigation on mechanism and kinetics of the Cl-initiated hydrogen abstraction reactions of ethyl trifluoroacetate at 298 K. J Mol Model 20, 2475 (2014). https://doi.org/10.1007/s00894-014-2475-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2475-2

Keywords

Navigation