Skip to main content

Advertisement

Log in

Reduced expression of intestinal N-acetylglutamate synthase in suckling piglets: a novel molecular mechanism for arginine as a nutritionally essential amino acid for neonates

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The objective of this study was to determine developmental changes in mRNA and protein levels for N-acetylglutamate synthase (NAGS; a key enzyme in synthesis of citrulline and arginine from glutamine/glutamate and proline) in the small intestine of suckling piglets. The porcine NAGS gene was cloned using the real-time polymerase-chain reaction (RT-PCR) method. The porcine NAGS gene encoded 368 amino acid residues and had a high degree of sequence similarity to the “conserved domain” of human and mouse NAGS genes. The porcine NAGS gene was expressed in E. coli BL21 and a polyclonal antibody against the porcine NAGS protein was developed. Real-time RT-PCR and western-blot analyses were performed to quantify NAGS mRNA and protein, respectively, in the jejunum and ileum of 1- to 28-day-old pigs. Results indicated that intestinal NAGS mRNA levels were lower in 7- to 28-day-old than in 1-day-old pigs. Immunochemical analysis revealed that NAGS protein was localized in enterocytes of the gut. Notably, intestinal NAGS protein abundance declined progressively during the 28-day suckling period. The postnatal decrease in NAGS protein levels was consistent with the previous report of reduced NAGS enzymatic activity as well as reduced synthesis of citrulline and arginine in the small intestine of 7- to 28-day-old pigs. Collectively, these results suggest that intestinal NAGS expression is regulated primarily at the post-transcriptional level. The findings also provide a new molecular basis to explain that endogenous synthesis of arginine is impaired in sow-reared piglets and arginine is a nutritionally essential amino acid for the neonates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Arg:

Arginine

CPSI:

Carbamylphosphate synthetase I

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

IPTG:

Isopropyl-β-d-thiogalactopyranoside

MTS:

Mitochondrial targeting signal

NAG:

N-acetylglutamate

NAGS:

N-acetylglutamate synthase

RT-PCR:

Real-time polymerase-chain reaction

SDS-PAGE:

SDS-polyacrylamide gel electrophoresis

References

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Caldovic L, Morizono H, Yu XL et al (2002a) Identification, cloning and expression of the mouse N-acetylglutamate synthase gene. Biochem J 364:825–831

    Article  PubMed  CAS  Google Scholar 

  • Caldovic L, Morizono H, Panglao MG et al (2002b) Cloning and expression of the human N-acetylglutamate synthase gene. Biochem Biophys Res Commun 299:581–586

    Article  PubMed  CAS  Google Scholar 

  • Caldovic L, Lopez GY, Haskins N et al (2006) Biochemical properties of recombinant human and mouse N-acetylglutamate synthase. Mol Genet Metab 87:226–232

    Article  PubMed  CAS  Google Scholar 

  • Chen LX, Li P, Wang JJ et al (2009) Catabolism of nutritionally essential amino acids in developing porcine enterocytes. Amino Acids 37:143–152

    Article  PubMed  CAS  Google Scholar 

  • Davis TA, Nguyen HV, Garciaa-Bravo R et al (1994) Amino acid composition of human milk is not unique. J Nutr 124:1126–1132

    PubMed  CAS  Google Scholar 

  • Dekaney CM, Wu GY, Yin YL et al (2008) Regulation of ornithine aminotransferase gene expression and activity by all-transretinoic acid in Caco-2 intestinal epithelial cells. J Nutr Biochem 19:674–681

    Article  PubMed  CAS  Google Scholar 

  • Deng ZY, Zhang JW, Wu GY et al (2007) Dietary supplementation with polysaccharides from Semen cassiae enhances immunoglobulin production and interleukin gene expression in early-weaned piglets. J Sci Food Agric 87:1868–1873

    Article  CAS  Google Scholar 

  • Deng D, Yin YL, Chu WY et al (2009) Impaired translation initiation activation and reduced protein synthesis in weaned piglets fed a low-protein diet. J Nutr Biochem 20:544–552

    Article  PubMed  CAS  Google Scholar 

  • Fang J, Yan FY, Kong XF et al (2009) Dietary supplementation with Acanthopanax senticosus extract enhances gut health in weanling piglets. Livest Sci 123:268–275

    Article  Google Scholar 

  • Flynn NE, Wu GY (1996) An important role for endogenous synthesis of arginine in maintaining arginine homeostasis in neonatal pigs. Am J Physiol Regul Integr Comp Physiol 271:R1149–R1155

    CAS  Google Scholar 

  • Flynn NE, Meininger CJ, Haynes TE et al (2002) The metabolic basis of arginine nutrition and pharmacotherapy. Biomed Pharmacother 56:427–438

    Article  PubMed  CAS  Google Scholar 

  • Flynn NE, Bird JG, Guthrie AS (2009) Glucocorticoid regulation of amino acid and polyamine metabolism in the small intestine. Amino Acids 37:123–129

    Article  PubMed  CAS  Google Scholar 

  • Fu WJ, Stromberg AJ, Viele K et al (2010) Statistics and bioinformatics in nutritional sciences: analysis of complex data in the era of systems biology. J Nutr Biochem 21:561–572

    Article  PubMed  CAS  Google Scholar 

  • Haynes TE TE, Li P, Li XL et al (2009) l-Glutamine or l-alanyl-l-glutamine prevents oxidant- or endotoxin-induced death of neonatal enterocytes. Amino Acids 37:131–142

    Article  PubMed  Google Scholar 

  • He QH, Kong XF, Wu GY et al (2009) Metabolomic analysis of the response of growing pigs to dietary l-arginine supplementation. Amino Acids 37:199–208

    Article  PubMed  CAS  Google Scholar 

  • Hou ZP, Yin YL, Huang RL et al (2008) Rice protein concentrate partially replaces dried whey in the diet for early-weaned piglets and improves their growth performance. J Sci Food Agric 88:1187–1193

    Article  CAS  Google Scholar 

  • Hou YQ, Wang L, Ding BY et al (2010) Dietary α-ketoglutarate supplementation ameliorates intestinal injury in lipopolysaccharide-challenged piglets. Amino Acids 39:555–564

    Article  PubMed  CAS  Google Scholar 

  • Huang RL, Yin YL, Wu GY et al (2005) Effect of dietary oligochitosan supplementation on ileal digestibility of nutrients and performance in broilers. Poult Sci 84:1383–1388

    PubMed  CAS  Google Scholar 

  • Jobgen WS, Fried SK, Fu WJ et al (2006) Regulatory role for the arginine-nitric oxide pathway in energy-substrate metabolism. J Nutr Biochem 17:571–588

    Article  PubMed  CAS  Google Scholar 

  • Jobgen WS, Fu WJ, Gao H et al (2009) High fat feeding and dietary l-arginine supplementation differentially regulate gene expression in rat white adipose tissue. Amino Acids 37:187–198

    Article  PubMed  CAS  Google Scholar 

  • Kang P, Yin YL, Ruan Z et al (2008) Effect of replacement of lactose with partially hydrolysed rice syrup on small intestine development in weaned pigs from 7 to 21 days. J Sci Food Agric 88:1932–1938

    Article  CAS  Google Scholar 

  • Kang P, Toms D, Yin YL et al (2010) Epidermal growth factor-expressing Lactococcus lactis enhances intestinal development of early-weaned pigs. J Nutr 140:806–811

    Article  PubMed  CAS  Google Scholar 

  • Kim SW, Wu GY (2004) Dietary arginine supplementation enhances the growth of milk-fed young pigs. J Nutr 134:625–630

    PubMed  CAS  Google Scholar 

  • Kim SW, Wu G (2009) Regulatory role for amino acids in mammary gland growth and milk synthesis. Amino Acids 37:89–95

    Article  PubMed  CAS  Google Scholar 

  • Kong XF, Wu GY, Liao YP et al (2007) Effects of Chinese herbal ultra-fine powder as a dietary additive on growth performance, serum metabolites and intestinal health in early-weaned piglets. Livest Sci 108:272–275

    Article  Google Scholar 

  • Kong XF, Yin YL, He QH et al (2009) Dietary supplementation with Chinese herbal powder enhances ileal digestibilities and serum concentrations of amino acids in young pigs. Amino acids 37:573–582

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Google Scholar 

  • Li TJ, Da QZ, Yin YL et al (2008) Dietary starch sources affect net portal appearance of amino acids and glucose in growing pigs. Animal 2:723–729

    Article  CAS  Google Scholar 

  • Li LL, Hou ZP, Zhang B et al (2009a) The effect of dietary addition of a polysaccharide from atractylodes macrophala koidz on growth performance, immunoglobulin concentration and IL-1β expression in weaned pigs. J Agric Sci 147:625–631

    Article  CAS  Google Scholar 

  • Li P, Kim SW, Li XL et al (2009b) Dietary supplementation with cholesterol and docosahexaenoic acid affects concentrations of amino acids in tissues of young pigs. Amino Acids 37:709–716

    Article  PubMed  Google Scholar 

  • Li XL, Bazer FW, Gao HJ et al (2009c) Amino acids and gaseous signaling. Amino Acids 37:65–78

    Article  PubMed  Google Scholar 

  • Liu YL, Shi JX, Lu J et al (2009) Activation of peroxisome proliferator-activated receptor-c potentiates pro-inflammatory cytokine production, and adrenal and somatotropic changes of weaned pigs after Escherichia coli lipopolysaccharide challenge. Innate Immun 15:169–178

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆Ct method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • McKnight JR, Satterfield MC, Jobgen WS et al (2010) Beneficial effects of l-arginine on reducing obesity: potential mechanisms and important implications for human health. Amino Acids 39:349–357

    Article  PubMed  CAS  Google Scholar 

  • Morizono H, Caldovic L, Shi DS et al (2004) Mammalian N-acetylglutamate synthase. Mol Genet Metab 81:S4–S11

    Article  PubMed  CAS  Google Scholar 

  • Palii SS, Kays CE, Deval C et al (2009) Specificity of amino acid regulated gene expression: analysis of gene subjected to either complete or single amino acid deprivation. Amino Acids 37:79–88

    Article  PubMed  CAS  Google Scholar 

  • Rhoads JM, Wu G (2009) Glutamine, arginine, and leucine signaling in the intestine. Amino Acids 37:111–122

    Article  CAS  Google Scholar 

  • Schmidt E, Nuoffer J, Haberle J et al (2005) Identification of novel mutations of the human N-acetylglutamate synthase gene and their functional investigation by expression studies. Biochim Biophys Acta 1740:54–59

    PubMed  CAS  Google Scholar 

  • Suryawan A, Orellana R, Nguyen H et al (2007) Activation by insulin and amino acids of signaling components leading to translation initiation in skeletal muscle of neonatal pigs is developmentally regulated. Am J Physiol Endocrinol Metab 293:E1597–E1605

    Article  PubMed  CAS  Google Scholar 

  • Suryawan A, O’Connor PMJ, Bush JA et al (2009) Differential regulation of protein synthesis by amino acids and insulin in peripheral and visceral tissues of neonatal pigs. Amino Acids 37:97–110

    Article  PubMed  CAS  Google Scholar 

  • Tan BE, Li XG, Kong XF et al (2009) Dietary l-arginine supplementation enhances the immune status in early-weaned piglets. Amino Acids 37:323–331

    Article  PubMed  CAS  Google Scholar 

  • Tan BE, Yin Y, Kong X et al (2010) l-Arginine stimulates proliferation and prevents endotoxin-induced death of intestinal cells. Amino Acids 38:1227–1235

    Article  PubMed  CAS  Google Scholar 

  • Tang ZR, Yin YL, Nyachoti CM et al (2005) Effect of dietary supplementation of chitosan and galacto-mannan-oligosaccharide on serum parameters and the insulin like growth factor-I mRNA expression in early-weaned piglets. Domest Anim Endocrinol 28:430–441

    Article  PubMed  CAS  Google Scholar 

  • Tang ZR, Yin YL, Zhang YM (2009) Effects of dietary supplementation with an expressed fusion peptide bovine lactoferricin–lactoferrampin on performance, immune function and intestinal mucosal morphology in piglets weaned at age 21 d. Bri J Nutr 101:998–1005

    Article  CAS  Google Scholar 

  • Tang ZR, Zhang YM, Stewart AF et al (2010) High-level expression, purification and antibacterial activity of bovine lactoferricin and lactoferrampin in Photorhabdus luminescens. Protein Expr Purif. doi:10.1016/j.pep.2010.05.013

  • Thompson JD, Gibson TJ, Plewniak F et al (1997) The CLUSTAL_X windows interface: Xexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Wakabayashi Y, Yamada E, Hasegawa T et al (1991) Enzymological evidence for the indispensability of small intestine in the synthesis of arginine from glutamate I. Pyrroline-5-carboxylate synthase. Arch Biochem Biophys 291:1–8

    Article  PubMed  CAS  Google Scholar 

  • Wang XQ, Ou DY, Yin JD et al (2009a) Proteomic analysis reveals altered expression of proteins related to glutathione metabolism and apoptosis in the small intestine of zinc oxide-supplemented piglets. Amino Acids 37:209–218

    Article  PubMed  Google Scholar 

  • Wang W, Shi C, Zhang J et al (2009b) Molecular cloning, distribution and ontogenetic expression of the oligopeptide transporter PepT1 mRNA in Tibetan suckling piglets. Amino Acids 37:593–601

    Article  PubMed  CAS  Google Scholar 

  • Wence W, Gu WT, Tang XF et al (2009) Molecular cloning, tissue distribution and ontogenetic expression of the amino acid transporter b0, +cDNA in the small intestine of Tibetan suckling piglets. Comp Biochem Physiol B 154:157–164

    Google Scholar 

  • Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17

    Article  PubMed  Google Scholar 

  • Wu G (2010) Recent advances in swine amino acid nutrition. J Anim Sci Biotech 1:49–61

    Google Scholar 

  • Wu GY, Knabe DA (1995) Arginine synthesis in enterocytes of neonatal pigs. Am J Physiol Regul Integr Comp Physiol 269:R621–R629

    CAS  Google Scholar 

  • Wu G, Morris SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17

    PubMed  CAS  Google Scholar 

  • Wu G, Knabe DA, Flynn NE (1994) Synthesis of citrulline from glutamine in pig enterocytes. Biochem J 299:115–121

    PubMed  CAS  Google Scholar 

  • Wu G, Knabe DA, Yan W, Flynn NE (1995) Glutamine and glucose metabolism in enterocytes of the neonatal pig. Am J Physiol Regul Integr Comp Physiol 268:R334–R342

    CAS  Google Scholar 

  • Wu GY, Meininger CJ, Knabe DA (2000a) Arginine nutrition in development, health and disease. Curr Opin Clin Nutr Metab Care 3:59–66

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Flynn NE, Knabe DA (2000b) Enhanced intestinal synthesis of polyamines from proline in cortisol-treated piglets. Am J Physiol Endocrinol Metab 279:E395–E402

    PubMed  CAS  Google Scholar 

  • Wu G, Flynn NE, Knabe DA, Jaeger LA (2000c) A cortisol surge mediates the enhanced polyamine synthesis in porcine enterocytes during weaning. Am J Physiol Regul Integr Comp Physiol 279:R554–R559

    PubMed  CAS  Google Scholar 

  • Wu GY, Knabe DA, Kim SW (2004a) Arginine nutrition in neonatal pigs. J Nutr 134:2783S–2790S

    PubMed  CAS  Google Scholar 

  • Wu GY, Jaeger LA, Bazerb FW et al (2004b) Arginine deficiency in preterm infants: biochemical mechanisms and nutritional implications. J Nutr Biochem 15:442–451

    Article  PubMed  CAS  Google Scholar 

  • Wu GY, Bazer FW, Davis TA et al (2007) Important roles for the arginine family of amino acids in swine nutrition and production. Livest Sci 112:8–22

    Article  Google Scholar 

  • Wu GY, Bazer FW, Davis TA et al (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:153–168

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Ruan Z, Gao YL et al (2010a) Dietary supplementation with l-arginine or N-carbamylglutamate enhances intestinal growth and heat shock protein-70 expression in weanling pigs fed a corn- and soybean meal-based diet. Amino Acids 39:831–839

    Article  PubMed  CAS  Google Scholar 

  • Wu WZ, Wang XQ, Wu GY et al (2010b) Differential composition of proteomes in sow colostrum and milk from anterior and posterior mammary glands. J Anim Sci 88:2657–2664

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Yin YL, Li TJ et al (2010c) Dietary protein, energy and arginine affect LAT1 expression in forebrain white matter differently. Animal 4(9):1518–1521

    Article  CAS  Google Scholar 

  • Yang CB, Jiang Y, Huang KH et al (2003) Application of real-time PCR for quantitative detection of Campylobacter jejuni in poultry, milk and environmental water. FEMS Immunol Med Microbiol FEMSIM 38:265–271

    Article  CAS  Google Scholar 

  • Yang CB, Jiang Y, Huang KH et al (2004) A real time PCR assay for the detection and quantitation of Campylobacter jejuni using SYBR green I and the light cycler. Yale J Biol Med 77:125–132

    PubMed  CAS  Google Scholar 

  • Yang CB, Li AK, Yin YL et al (2005) Effects of dietary supplementation of cysteamine on growth performance, carcass quality, serum hormones and gastric ulcer in finishing pigs. J Sci Food Agric 85:1947–1952

    Article  CAS  Google Scholar 

  • Yao K, Yin YL, Chu WY et al (2008) Dietary arginine supplementation increases mTOR signaling activity in skeletal muscle of neonatal pigs. J Nutr 138:867–872

    PubMed  CAS  Google Scholar 

  • Yin YL, Baidoo SK, Schulze H et al (2001) Effect of supplementing diets containing hulless barley varieties having different levels of non-starch polysaccharides with β-glucanase and xylanase on the physiological status of gastrointestinal tract and nutrient digestibility of weaned pigs. Livest Prod Sci 71:97–107

    Article  Google Scholar 

  • Yin YL, Deng ZY, Huang RL et al (2004) The effect of arabinoxylanase and protease supplementation on nutritional value of diets containing wheat bran or rice bran in growing pig. J Anim Feed Sci 13:445–461

    Google Scholar 

  • Yin YL, Tang ZR, Sun ZH et al (2008) Effect of galacto-mannan-oligosaccharides or chitosan supplementation on cytoimmunity and humoral immunity response in early-weaned piglets. Asian-Aust J Anim Sci 21:723–731

    CAS  Google Scholar 

  • Yin FG, Liu YL, Yin YL et al (2009) Dietary supplementation with Astragalus polysaccharide enhances ileal digestibilities and serum concentrations of amino acids in early weaned piglets. Amino Acids 37:263–270

    Article  PubMed  CAS  Google Scholar 

  • Zeng J, Geng MM, Liu YD et al (2007) Expression, purification and molecular modelling of the Iro protein from Acidithiobacillus ferrooxidans Fe-1. Protein Expr Purif 52:146–152

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was jointly supported by grants from National Natural Science Foundation of China (30928018), Program for the National Basic Research Program of China (30928018), the Chinese Academy of Sciences Knowledge Innovation Project (KSCX2-YW-N-051), the Chinese Academy of Sciences overseas outstanding scholar project (2005-1-4), the CAS/SAFEA International Partnership Program for Creative Research Teams, the Thousand-People-Talent program at China Agricultural University, National Research Initiative Competitive Grants from the Animal Growth & Nutrient Utilization Program (2008-35206-18764) of the USDA National Institute of Food and Agriculture, and Texas AgriLife Research (H-8200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulong Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geng, M., Li, T., Kong, X. et al. Reduced expression of intestinal N-acetylglutamate synthase in suckling piglets: a novel molecular mechanism for arginine as a nutritionally essential amino acid for neonates. Amino Acids 40, 1513–1522 (2011). https://doi.org/10.1007/s00726-010-0761-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0761-6

Keywords

Navigation