Skip to main content
Log in

Dietary α-ketoglutarate supplementation ameliorates intestinal injury in lipopolysaccharide-challenged piglets

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Neonates are at increased risk for inflammatory bowel disease, but effective prevention and treatments are currently limited. This study was conducted with the lipopolysaccharide (LPS)-challenged piglet model to determine the effects of dietary supplementation with α-ketoglutarate (AKG) on the intestinal morphology and function. Eighteen 24-day-old pigs (weaned at 21 days of age) were assigned randomly to control, LPS, and LPS + AKG groups. The piglets in the control and LPS groups were fed a corn- and soybean meal-based diet, whereas the LPS + AKG group was fed the basal diet supplemented with 1% AKG. On days 10, 12, 14, and 16, piglets in the LPS and LPS + AKG groups received intraperitoneal administration of LPS (80 μg/kg BW), whereas piglets in the control group received the same volume of saline. On day 16, d-xylose was orally administrated to all pigs at the dose of 0.1 g/kg BW, 2 h after LPS or saline injection, and blood samples were collected 3 h thereafter. Twenty-four hours post-administration of LPS or saline, pigs were killed to obtain intestinal mucosae for analysis. Compared with the control group, LPS challenge reduced (P < 0.05) protein levels, the ratio of villus height to crypt depth, and the ratio of phosphorylated mTOR to total mTOR in duodenal, jejunal, and ileal mucosa. These adverse effects of LPS were attenuated (P < 0.05) by AKG supplementation. Moreover, AKG prevented the LPS-induced increase in intestinal HSP70 expression. Collectively, these novel results indicate that dietary supplementation with 1% AKG activates the mTOR signaling, alleviates the mucosal damage, and improves the absorptive function of the small intestine in LPS-challenged piglets. The findings not only help understand the mode of AKGs actions in the neonatal gut but also have important implications for infant nutrition under inflammatory conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AKG:

α-ketoglutarate

BSA:

Bovine serum albumin

BW:

Body weight

HSP 70:

Heat shock protein 70

LPS:

Lipopolysaccharide

mTOR:

Mammalian target of rapamycin

PBS:

Phosphate buffered saline

SEM:

Standard error of the mean

References

  • Baker DH (2009) Advances in protein-amino acid nutrition of poultry. Amino Acids 37:29–41

    Article  PubMed  CAS  Google Scholar 

  • Beckmann RP, Mizzen LE, Welch WJ (1990) Interaction of Hsp 70 with newly synthesized proteins: implications for protein folding and assembly. Science 248:850–854

    Article  PubMed  CAS  Google Scholar 

  • Bergen WG, Wu G (2009) Intestinal nitrogen recycling and utilization in health and disease. J Nutr 139:821–825

    Article  PubMed  CAS  Google Scholar 

  • Blachier F, Mariotti F, Huneau JF, Tomé D (2007) Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids 33:547–562

    Article  PubMed  CAS  Google Scholar 

  • Blikslager AT, Moeser AJ, Gookin JL, Jones SL, Odle J (2007) Restoration of barrier function in injured intestinal mucosa. Physiol Rev 87:545–564

    Article  PubMed  CAS  Google Scholar 

  • Chen LX, Li P, Wang JJ, Li XL, Gao HJ, Yin YL, Hou YQ, Wu G (2009) Catabolism of nutritionally essential amino acids in developing porcine enterocytes. Amino Acids 37:143–152

    Article  PubMed  CAS  Google Scholar 

  • Davis TA, Burrin DG, Fiorotto ML, Reeds PJ, Jahoor F (1998) Role of insulin and amino acids in the regulation of protein synthesis in the neonate. J Nutr 128:S347–S350

    Google Scholar 

  • Davis TA, Fiorotto ML, Burrin DG, Reeds PJ, Nguyen HV, Beckett PR, Vann RC, O’Connor PMJ (2002) Stimulation of protein synthesis by both insulin and amino acids is unique to skeletal muscle in neonatal pigs. Am J Physiol Endocrinol Metab 282:E880–E890

    PubMed  CAS  Google Scholar 

  • Deng D, Yin YL, Chu WY, Yao K, Li TJ, Huang RL, Liu ZQ, Zhang JS, Wu G (2009) Impaired translation initiation activation and reduced protein synthesis in weaned piglets fed a low-protein diet. J Nutr Biochem 20:544–552

    Article  PubMed  CAS  Google Scholar 

  • Eberts TJ, Sample RH, Glick MR, Ellis GH (1979) A simplified colorimetric micro method for xylose in serum or urine with phloroglucinol. Clin Chem 25:1440–1443

    PubMed  CAS  Google Scholar 

  • Eklou-Lawson M, Bernard F, Neveux N, Chaumonte C, Bos C, Davila-Gay A-M, Tomé CynoberL, Blachier F (2009) Colonic luminal ammonia and portal blood l-glutamine and l-arginine concentrations: a possible link between colon mucosa and liver ureagenesis. Amino Acids 37:751–760

    Article  PubMed  CAS  Google Scholar 

  • Elango R, Ball RO, Pencharz PB (2009) Amino acid requirements in humans: with a special emphasis on the metabolic availability of amino acids. Amino Acids 37:19–27

    Article  PubMed  CAS  Google Scholar 

  • Fink MP, Heard SO (1990) Laboratory models of sepsis and septic shock. J Surg Res 49:186–196

    Article  PubMed  CAS  Google Scholar 

  • Flynn NE, Bird JG, Guthrie AS (2009) Glucocorticoid regulation of amino acid and polyamine metabolism in the small intestine. Amino Acids 37:123–129

    Article  PubMed  CAS  Google Scholar 

  • Frank JW, Escobar J, Suryawan A, Nguyen HV, Kimball SR, Jefferson LS, Davis TA (2006) Dietary protein and lactose increase translation initiation factor activation and tissue protein synthesis in neonatal pigs. Am J Physiol Endocrinol Metab 290:E225–E233

    Article  PubMed  CAS  Google Scholar 

  • Frank J, Escobar J, Nguyen HV, Jobgen SC, Jobgen WS, Davis TA, Wu G (2007) Oral N-carbamylglutamate supplementation increases protein synthesis in skeletal muscle of pigets. J Nutr 137:315–319

    PubMed  CAS  Google Scholar 

  • Fu WJ, Stromberg AJ, Viele K, Carroll RJ, Wu G (2010) Statistics and bioinformatics in nutritional sciences: analysis of complex data in the era of systems biology. J Nutr Biochem doi:10.1016/j.jnutbio.2009.11.007

  • Hampson DJ (1986) Alterations in piglet small intestinal structure at weaning. Res Vet Sci 40:32–40

    PubMed  CAS  Google Scholar 

  • Han J, Liu YL, Fan W, Chao J, Hou YQ, Yin YL, Zhu HL, Meng GQ, Che ZQ (2009) Dietary l-arginine supplementation alleviates immunosuppression induced by cyclophosphamide in weaned pigs. Amino Acids 37:643–651

    Article  PubMed  CAS  Google Scholar 

  • Haynes TE, Li P, Li XL, Shimotori K, Sato H, Flynn NE, Wang JJ, Knabe DA, Wu G (2009) l-Glutamine or l-alanyl-l-glutamine prevents oxidant- or endotoxin-induced death of neonatal enterocytes. Amino Acids 37:131–142

    Article  PubMed  CAS  Google Scholar 

  • He QH, Kong XF, Wu G, Ren PP, Tang HR, Hao FH, Huang RL, Li TJ, Tan BE, Li P, Tang ZR, Yin YL, Wu YN (2009) Metabolomic analysis of the response of growing pigs to dietary l-arginine supplementation. Amino Acids 37:199–208

    Article  PubMed  CAS  Google Scholar 

  • Hu QZ (2008) Effects of α-ketoglutarate on growth performance and intestinal function of weaned piglets [Thesis]. Wuhan: Wuhan Polytechnic University

  • Hu CA, Khalil S, Zhaorigetu S, Liu Z, Tyler M, Wan G, Valle D (2008) Human ∆1-pyrroline-5-carboxylate synthase: function and regulation. Amino Acids 35:665–672

    Article  PubMed  CAS  Google Scholar 

  • Hu Q, Hou Y, Ding B, Zhu H, Liu Y, Wang M, Xiao H (2009) Effects of α-ketoglutarate on mucosal morphology and function of small intestine in piglets. J Anim Sci 87(E-Suppl 2):175 (Abstract)

    Google Scholar 

  • Jobgen W, Fu WJ, Gao H, Li P, Meininger CJ, Smith SB, Spencer TE, Wu G (2009) High fat feeding and dietary l-arginine supplementation differentially regulate gene expression in rat white adipose tissue. Amino Acids 37:187–198

    Article  PubMed  CAS  Google Scholar 

  • Karinch AM, Kimball SR, Vary TC, Jefferson LS (1993) Regulation of eukaryotic initiation factor-2B activity in muscle of diabetic rats. Am J Physiol Endocrinol Metab. 264:E101–E108

    CAS  Google Scholar 

  • Kim SW, Wu G (2004) Dietary arginine supplementation enhances the growth of milk-fed young pigs. J Nutr 134:625–630

    PubMed  CAS  Google Scholar 

  • Kim SW, Wu G (2009) Regulatory role for amino acids in mammary gland growth and milk synthesis. Amino Acids 37:89–95

    Article  PubMed  CAS  Google Scholar 

  • Kohli R, Meininger CJ, Haynes TE, Yan W, Self JT, Wu G (2004) Dietary l-arginine supplementation enhances endothelial nitric oxide synthesis in streptozotocin-induced diabetic rats. J Nutr 134:600–608

    PubMed  CAS  Google Scholar 

  • Kong XF, Yin YL, He QH, Yin FG, Liu HJ, Li TJ, Huang RL, Geng MM, Ruan Z, Deng ZY, Xie MY, Wu G (2009) Dietary supplementation with chinese herbal powder enhances ileal digestibilities and serum concentrations of amino acids in young pigs. Amino Acids 37:573–582

    Article  PubMed  CAS  Google Scholar 

  • Kristensen NB, Jungvid H, Fernandez JA, Pierzynowski SG (2002) Absorption and metabolism of alpha-ketoglutarate in growing pigs. J Anim Physiol Anim Nutr 86:239–245

    Article  CAS  Google Scholar 

  • Lalles JP, Bosi P, Smidt H, Stokes CR (2007) Weaning: a challenge to gut physiologists. Livest Sci 108:82–93

    Article  Google Scholar 

  • Lambert BD, Stoll B, Niinikoski H, Pierzynowski S, Burrin DG (2002) Net portal absorption of enterally fed α-ketoglutarate is limited in young pigs. J Nutr 132:3383–3386

    PubMed  CAS  Google Scholar 

  • Lambert BD, Filip R, Stoll B, Junghans P, Derno M, Hennig U, Souffrant WB, Pierzynowski S, Burrin DG (2006) First-pass metabolism limits the intestinal absorption of enteral a-ketoglutarate in young pigs. J Nutr 136:2779–2784

    PubMed  CAS  Google Scholar 

  • Le Floc′h N, Seve B (2000) Protein and amino acid metabolism in the intestine of the pig: from digestion to appearance in the portal vein. Prod Anim 13:303–314

    Google Scholar 

  • Li N, Liboni K, Fang M, Samuelson D, Lewis P, Patel R, Neu J (2004) Glutamine decreases lipopolysaccharide-induced intestinal inflammation in infant rats. Am J Physiol Gastrointest Liver Physiol 286:G914–G921

    Article  PubMed  CAS  Google Scholar 

  • Li XL, Bazer FW, Gao H, Jobgen W, Johnson GA, Li P, McKnight JR, Satterfield MC, Spencer TE, Wu G (2009a) Amino acids and gaseous signaling. Amino Acids 37:65–78

    Article  PubMed  CAS  Google Scholar 

  • Li P, Kim SW, Li XL, Datta S, Pond WG, Wu G (2009b) Dietary supplementation with cholesterol and docosahexaenoic acid affects concentrations of amino acids in tissues of young pigs. Amino Acids 37:709–716

    Article  PubMed  CAS  Google Scholar 

  • Liao XH, Majithia A, Huang XL, Kimmel AR (2008) Growth control via TOR kinase signaling, an intracellular sensor of amino acids and energy availability, with crosstalk potential to proline metabolism. Amino Acids 35:761–770

    Article  PubMed  CAS  Google Scholar 

  • Liu YL, Huang JJ, Hou YQ, Zhu HL, Zhao SJ, Ding BY, Yin YL, Yi GF, Shi JY, Fan W (2008) Dietary arginine supplementation alleviates intestinal mucosal disruption induced by Escherichia coli lipopolysaccharide in weaned pigs. Br J Nutr 100:552–560

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Hou YQ, Ding BY, Liu YL, Zhu HL, Wang L, Li YT (2009) Attenuating effect of α-ketoglutaric acid on growth depression in weaned pigs challenged with lipopolysaccharide. Chin J Anim Nutr 21:519–524

    CAS  Google Scholar 

  • Lobo SM, De Backer D, Sun Q, Tu Z, Dimopoulos G, Preiser J-C, Nagy N, Vray B, Vercruy V, Terzi RGG, Vincent JG (2003) Gut mucosal damage during endotoxic shock is due to mechanisms other than gut ischemia. J Appl Physiol 95:2047–2054

    PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Luna LG (1968) Manual of histologic staining methods of the armed forces institute of pathology, 3rd edn. McGraw-Hill, New York, p 258

    Google Scholar 

  • Mansoori B, Nodeh H, Modirsanei M, Rahbari S, Aparnak P (2009) d-Xylose absorption test: A tool for the assessment of the effect of anticoccidials on the intestinal absorptive capacity of broilers during experimental coccidiosis. Anim Feed Sci Tech 148:301–308

    Article  CAS  Google Scholar 

  • Mercer DW, Smith GS, Cross JM, Russell DH, Chang L, Cacioppo J (1996) Effects of lipopolysaccharide on intestinal injury: potential role of nitric oxide and lipid peroxidation. J Surg Res 63:185–192

    Article  PubMed  CAS  Google Scholar 

  • Montagne L, Pluske JR, Hampson DJ (2003) A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Anim Feed Sci Tech 108:95–117

    Article  Google Scholar 

  • Nabuurs MJA, Hoogendoorn A, van der Molen EJ, van Osta ALM (1993) Villus height and crypt depth in weaned and unweaned pigs, reared under various circumstances in the Netherlands. Res Vet Sci 55:78–84

    PubMed  CAS  Google Scholar 

  • Odenlund M, Holmqvist B, Baldetorp B, Hellstrand P, Nilsson B (2009) Polyamine synthesis inhibition induces S phase cell cycle arrest in vascular smooth muscle cells. Amino Acids 36:273–282

    Article  PubMed  CAS  Google Scholar 

  • Orellana RA, O’Connor PMJ, Nguyen HV, Bush JA, Suryawan AS, Thivierge MC, Fiorotto ML, Davis TA (2002) Endotoxemia reduces skeletal muscle protein synthesis in neonates. Am J Physiol Endocrinol Metab 283:E909–E916

    PubMed  CAS  Google Scholar 

  • Palii SS, Kays CE, Deval C, Bruhat A, Fafournoux P, Kilberg MS (2009) Specificity of amino acid regulated gene expression: analysis of gene subjected to either complete or single amino acid deprivation. Amino Acids 37:79–88

    Article  PubMed  CAS  Google Scholar 

  • Phang JM, Donald SP, Pandhare J, Liu YM (2008) The metabolism of proline, a stress substrate, modulates carcinogenic pathways. Amino Acids 35:681–690

    Article  PubMed  CAS  Google Scholar 

  • Pierzynowski SG, Sjodin A (1998) Perspectives of glutamine and its derivatives as feed additives for farm animals. J Anim Feed Sci 7:79–91

    Google Scholar 

  • Rhoads JM, Wu G (2009) Glutamine, arginine, and leucine signaling in the intestine. Amino Acids 37:111–122

    Article  CAS  Google Scholar 

  • Rolston DD, Mathan VI (1989) Xylose transport in the human jejunum. Dig Dis Sci 34:553–558

    Article  PubMed  CAS  Google Scholar 

  • Sancak Y, Peterson TR, Shaul YD et al (2008) The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320:1496–1501

    Article  PubMed  CAS  Google Scholar 

  • Sarbassov DD, Ali SM, Sabatini DM (2005) Growing roles for the mTOR pathway. Curr Opin Cell Bio 17:596–603

    Article  CAS  Google Scholar 

  • Sepponen K, Poso AR (2006) The inducible form of heat shock protein 70 in the serum, colon and small intestine of the pig: comparison to conventional stress markers. Vet J 171:519–524

    Article  PubMed  CAS  Google Scholar 

  • Suryawan A, O’Connor PMJ, Bush JA, Nguyen HV, Davis TA (2009) Differential regulation of protein synthesis by amino acids and insulin in peripheral and visceral tissues of neonatal pigs. Amino Acids 37:105–110

    Article  CAS  Google Scholar 

  • Tan BE, Li XG, Kong XF, Huang RL, Ruan Z, Yao K, Deng ZY, Xie MY, Shinzato I, Yin YL, Wu G (2009a) Dietary L-arginine supplementation enhances the immune status in early-weaned piglets. Amino Acids 37:323–331

    Article  PubMed  CAS  Google Scholar 

  • Tan BE, Yin YL, Liu ZQ, Li XG, Xu HJ, Kong XF, Huang RL, Tang WJ, Shinzato I, Smith SB, Wu G (2009b) Dietary l-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs. Amino Acids 37:169–175

    Article  PubMed  CAS  Google Scholar 

  • Tan BE, Yin YL, Kong XF, Li P, Li XL, Gao HJ, Li XG, Huang RL, Wu G (2009c) l-Arginine stimulates proliferation and prevents endotoxin-induced death of intestinal cells. Amino Acids. doi: 10.1007/s00726-009-0334-8

  • Wang JJ, Chen LX, Li DF, Yin YL, Wang XQ, Li P, Dangott LJ, Hu WX, Wu G (2008) Intrauterine growth restriction affects the proteomes of the small intestine, liver and skeletal muscle in newborn pigs. J Nutr 138:60–66

    PubMed  CAS  Google Scholar 

  • Wang XQ, Ou DY, Yin JD, Wu G, Wang JJ (2009a) Proteomic analysis reveals altered expression of proteins related to glutathione metabolism and apoptosis in the small intestine of zinc oxide-supplemented piglets. Amino Acids 37:209–218

    Article  PubMed  CAS  Google Scholar 

  • Wang WW, Qiao SY, Li DF (2009b) Amino acids and gut function. Amino Acids 37:105–110

    Article  PubMed  CAS  Google Scholar 

  • Webel DM, Finck BN, Baker DH, Johnson RW (1997) Time course of increased plasma cytokines, cortisol, and urea nitrogen in pigs following intraperitoneal injection of lipopolysaccharide. J Anim Sci 75:1514–1520

    PubMed  CAS  Google Scholar 

  • Wu G (1998) Intestinal mucosal amino acid catabolism. J Nutr 128:1249–1252

    PubMed  CAS  Google Scholar 

  • Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Meininger CJ (2008) Analysis of citrulline, arginine, and methylarginines using high-Performance liquid chromatography. Methods Enzymol 440:177–189

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Morris SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17

    PubMed  CAS  Google Scholar 

  • Wu G, Borbolla AG, Knabe DA (1994a) The uptake of glutamine and release of arginine, citrulline and proline by the small intestine of developing pigs. J Nutr 124:2437–2444

    PubMed  CAS  Google Scholar 

  • Wu G, Knabe DA, Flynn NE (1994b) Synthesis of citrulline from glutamine in pig enterocytes. Biochem J 299:115–121

    PubMed  CAS  Google Scholar 

  • Wu G, Meier SA, Knabe DA (1996) Dietary glutamine supplementation prevents jejunal atrophy in weaned pigs. J Nutr 126:2578–2584

    PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Davis TA, Jaeger LA, Johnson GA, Kim SW, Knabe DA, Meininger CJ, Spencer TE, Yin YL (2007) Important roles for the arginine family of amino acids in swine nutrition and production. Livest Sci 112:8–22

    Article  Google Scholar 

  • Wu G, Bazer FW, Davis TA, Kim SW, Li P, Rhoads JM, Satterfield MC, Smith SB, Spencer TE, Yin YL (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:153–168

    Article  PubMed  CAS  Google Scholar 

  • Yao K, Yin Y, Chu W, Liu Z, Deng D, Li T, Huang R, Zhang J, Tan B, Wang W, Wu G (2008) Dietary arginine supplementation increases mtor signaling activity in skeletal muscle of neonatal pigs. J Nutr 138:867–872

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was jointly supported by National Natural Science Foundation of China (Grant No. 30871801), the Program for Innovative Research Groups of Hubei Provincial Natural Science Foundation (Grant No. 2007ABC009), and National Research Initiative Competitive Grants from the Animal Growth & Nutrient Utilization Program (2008-35206-18764) of the USDA National Institute of Food and Agriculture, and Texas AgriLife Research (H-82000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongqing Hou or Guoyao Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, Y., Wang, L., Ding, B. et al. Dietary α-ketoglutarate supplementation ameliorates intestinal injury in lipopolysaccharide-challenged piglets. Amino Acids 39, 555–564 (2010). https://doi.org/10.1007/s00726-010-0473-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0473-y

Keywords

Navigation