Skip to main content
Log in

FRET-FLIM applications in plant systems

  • Special Issue: New/Emerging Techniques in Biological Microscopy
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

A hallmark of cellular processes is the spatio-temporally regulated interplay of biochemical components. Assessing spatial information of molecular interactions within living cells is difficult using traditional biochemical methods. Developments in green fluorescent protein technology in combination with advances in fluorescence microscopy have revolutionised this field of research by providing the genetic tools to investigate the spatio-temporal dynamics of biomolecules in live cells. In particular, fluorescence lifetime imaging microscopy (FLIM) has become an inevitable technique for spatially resolving cellular processes and physical interactions of cellular components in real time based on the detection of Förster resonance energy transfer (FRET). In this review, we provide a theoretical background of FLIM as well as FRET-FLIM analysis. Furthermore, we show two cases in which advanced microscopy applications revealed many new insights of cellular processes in living plant cells as well as in whole plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACR4:

Arabidopsis crinkly 4

BiFC:

Bimolecular fluorescence complementation

BRI1:

Brassinosteroid insensitive 1

CLV1:

Clavata1

CPK21:

Calcium-dependent protein kinase 21

FCS:

Fluorescence correlation spectroscopy

FCCS:

Fluorescence cross-correlation spectroscopy

FLIM:

Fluorescence lifetime imaging microscopy

FRET:

Förster resonance energy transfer

FLS2:

Flagellin sensing 2

GFP:

Green fluorescent protein

LRR-RLK:

Leucine-rich repeat receptor-like kinases

MFIS:

Multiparameter fluorescence image spectroscopy

PM:

Plasma membrane

SERK:

Somatic embryogenesis receptor-like kinase

STED:

Stimulated emission depletion

TCSPC:

Time-correlated single photon counting

TIRF:

Total internal reflection fluorescence

VFP:

Visible fluorescent protein

References

  • Bader AN, Hofman EG, Voortman J, Henegouwen PMPVE, Gerritsen HC (2009) Homo-FRET imaging enables quantification of protein cluster sizes with subcellular resolution. Biophys J 97(9):2613–2622

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barber PR, Ameer-Beg SM, Gilbey J, Edens RJ, Ezike I, Vojnovic B (2005) Global and pixel kinetic data analysis for FRET detection by multi-photon time-domain FLIM. Multiphoton Microsc Biomed Sci 5700:171–181

    CAS  Google Scholar 

  • Bastiaens PI, Squire A (1999) Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell. Trends Cell Biol 9(2):48–52

    Article  CAS  PubMed  Google Scholar 

  • Beck M, Zhou J, Faulkner C, MacLean D, Robatzek S (2012) Spatio-temporal cellular dynamics of the Arabidopsis flagellin receptor reveal activation status-dependent endosomal sorting. Plant Cell 24(10):4205–4219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Becker W, Bergmann A, Konig K, Tirlapur U (2001) Picosecond fluorescence lifetime microscopy by TCSPC imaging. Multiphoton Microsc Biomed Sci 2(19):414–419

    Article  Google Scholar 

  • Becker W, Bergmann A, Hink MA, Konig K, Benndorf K, Biskup C (2004) Fluorescence lifetime imaging by time-correlated single-photon counting. Microsc Res Tech 63(1):58–66

    Article  CAS  PubMed  Google Scholar 

  • Becker W, Su B, Holub O, Weisshart K (2011) FLIM and FCS detection in laser-scanning microscopes: increased efficiency by GaAsP hybrid detectors. Microsc Res Tech 74(9):804–811

    CAS  PubMed  Google Scholar 

  • Borst JW, Hink MA, van Hoek A, Visser AJ (2005) Effects of refractive index and viscosity on fluorescence and anisotropy decays of enhanced cyan and yellow fluorescent proteins. J Fluoresc 15(2):153–160

    Article  CAS  PubMed  Google Scholar 

  • Breusegem SY, Levi M, Barry NP (2006) Fluorescence correlation spectroscopy and fluorescence lifetime imaging microscopy. Nephron Exp Nephrol 103(2):e41–e49

    Article  PubMed  Google Scholar 

  • Bücherl C, Aker J, de Vries S, Borst JW (2010) Probing protein-protein interactions with FRET-FLIM. Methods Mol Biol 655:389–399

    Article  PubMed  Google Scholar 

  • Bücherl CA, van Esse GW, Kruis A, Luchtenberg J, Westphal AH, Aker J, van Hoek A, Albrecht C, Borst JW, de Vries SC (2013) Visualization of BRI1 and BAK1(SERK3) membrane receptor heterooligomers during brassinosteroid signaling. Plant Physiol 162(4):1911–1925

    Article  PubMed Central  PubMed  Google Scholar 

  • Buurman EP, Sanders R, Draaijer A, Gerritsen HC, Vanveen JJF, Houpt PM, Levine YK (1992) Fluorescence lifetime imaging using a confocal laser scanning microscope. Scanning 14(3):155–159

    Article  Google Scholar 

  • Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA (2010) Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 90(3):1103–1163

    Article  CAS  PubMed  Google Scholar 

  • Clayton AHA, Hanley QS, Verveer PJ (2004) Graphical representation and multicomponent analysis of single-frequency fluorescence lifetime imaging microscopy data. J Microsc Oxf 213:1–5

    Article  CAS  Google Scholar 

  • Crivat G, Taraska JW (2012) Imaging proteins inside cells with fluorescent tags. Trends Biotechnol 30(1):8–16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Day RN, Davidson MW (2012) Fluorescent proteins for FRET microscopy: monitoring protein interactions in living cells. Bioessays 34(5):341–350

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Day RN, Schaufele F (2005) Imaging molecular interactions in living cells. Mol Endocrinol 19(7):1675–1686

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De Rybel B, Moller B, Yoshida S, Grabowicz I, Barbier de Reuille P, Boeren S, Smith RS, Borst JW, Weijers D (2013) A bHLH complex controls embryonic vascular tissue establishment and indeterminate growth in Arabidopsis. Dev Cell 24(4):426–437

    Article  PubMed  Google Scholar 

  • Dehmelt L, Bastiaens PI (2010) Spatial organization of intracellular communication: insights from imaging. Nat Rev Mol Cell Biol 11(6):440–452

    Article  CAS  PubMed  Google Scholar 

  • Demir F, Horntrich C, Blachutzik JO, Scherzer S, Reinders Y, Kierszniowska S, Schulze WX, Harms GS, Hedrich R, Geiger D, Kreuzer I (2013) Arabidopsis nanodomain-delimited ABA signaling pathway regulates the anion channel SLAH3. Proc Natl Acad Sci U S A 110(20):8296–8301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Digman MA, Caiolfa VR, Zamai M, Gratton E (2008) The phasor approach to fluorescence lifetime imaging analysis. Biophys J 94(2):L14–L16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dowling K, Hyde SCW, Dainty JC, French PMW, Hares JD (1997) 2-D fluorescence lifetime imaging using a time-gated image intensifier. Opt Commun 135(1–3):27–31

    Article  CAS  Google Scholar 

  • Ehrhardt D (2003) GFP technology for live cell imaging. Curr Opin Plant Biol 6(6):622–628

    Article  CAS  PubMed  Google Scholar 

  • Elgass K, Caesar K, Schleifenbaum F, Meixner AJ, Harter K (2010) The fluorescence lifetime of BRI1-GFP as probe for the noninvasive determination of the membrane potential in living cells. Imaging Manip Anal Biomol Cells Tissues Viii 7568

  • Elgass K, Caesar K, Harter K, Meixner AJ, Schleifenbaum F (2011) Combining ocFLIM and FIDSAM reveals fast and dynamic physiological responses at subcellular resolution in living plant cells. J Microsc 242(2):124–131

    Article  CAS  PubMed  Google Scholar 

  • Farinas J, Verkman AS (1999) Receptor-mediated targeting of fluorescent probes in living cells. J Biol Chem 274(12):7603–7606

    Article  CAS  PubMed  Google Scholar 

  • Fereidouni F, Esposito A, Blab GA, Gerritsen HC (2011) A modified phasor approach for analyzing time-gated fluorescence lifetime images. J Microsc 244(3):248–258

    Article  CAS  PubMed  Google Scholar 

  • Förster T (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Phys 437(1–2):55–75

    Article  Google Scholar 

  • Gadella TWJ, Jovin TM, Clegg RM (1993) Fluorescence lifetime imaging microscopy (FLIM)—spatial-resolution of microstructures on the nanosecond time-scale. Biophys Chem 48(2):221–239

    Article  CAS  Google Scholar 

  • Gerdes HH, Kaether C (1996) Green fluorescent protein: applications in cell biology. FEBS Lett 389(1):44–47

    Article  CAS  PubMed  Google Scholar 

  • Gerritsen HC, Asselbergs MAH, Agronskaia AV, Van Sark WGJHM (2002) Fluorescence lifetime imaging in scanning microscopes: acquisition speed, photon economy and lifetime resolution. J Microsc Oxf 206:218–224

    Article  CAS  Google Scholar 

  • Gordon GW, Berry G, Liang XH, Levine B, Herman B (1998) Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys J 74(5):2702–2713

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gratton E, Breusegem S, Sutin J, Ruan Q, Barry N (2003) Fluorescence lifetime imaging for the two-photon microscope: time-domain and frequency-domain methods. J Biomed Opt 8(3):381–390

    Article  PubMed  Google Scholar 

  • Grecco HE, Roda-Navarro P, Verveer PJ (2009) Global analysis of time correlated single photon counting FRET-FLIM data. Opt Express 17(8):6493–6508

    Article  CAS  PubMed  Google Scholar 

  • Harter K, Meixner AJ, Schleifenbaum F (2012) Spectro-microscopy of living plant cells. Mol Plant 5(1):14–26

    Article  CAS  PubMed  Google Scholar 

  • Hink MA, Shah K, Russinova E, de Vries SC, Visser AJ (2008) Fluorescence fluctuation analysis of Arabidopsis thaliana somatic embryogenesis receptor-like kinase and brassinosteroid insensitive 1 receptor oligomerization. Biophys J 94(3):1052–1062

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jares-Erijman EA, Jovin TM (2006) Imaging molecular interactions in living cells by FRET microscopy. Curr Opin Chem Biol 10(5):409–416

    Article  CAS  PubMed  Google Scholar 

  • Kapusta P, Wahl M, Benda A, Hof M, Enderlein J (2007) Fluorescence lifetime correlation spectroscopy. J Fluoresc 17(1):43–48

    Article  CAS  PubMed  Google Scholar 

  • Karpova TS, Baumann CT, He L, Wu X, Grammer A, Lipsky P, Hager GL, McNally JG (2003) Fluorescence resonance energy transfer from cyan to yellow fluorescent protein detected by acceptor photobleaching using confocal microscopy and a single laser. J Micros Oxf 209:56–70

    Article  CAS  Google Scholar 

  • Kremers GJ, van Munster EB, Goedhart J, Gadella TWJ (2008) Quantitative lifetime unmixing of multiexponentially decaying fluorophores using single-frequency fluorescence lifetime imaging microscopy. Biophys J 95(1):378–389

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kwaaitaal M, Keinath NF, Pajonk S, Biskup C, Panstruga R (2010) Combined bimolecular fluorescence complementation and Forster resonance energy transfer reveals ternary SNARE complex formation in living plant cells. Plant Physiol 152(3):1135–1147

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kwaaitaal M, Schor M, Hink MA, Visser AJ, de Vries SC (2011) Fluorescence correlation spectroscopy and fluorescence recovery after photobleaching to study receptor kinase mobility in planta. Methods Mol Biol 779:225–242

    Article  CAS  PubMed  Google Scholar 

  • Lakowicz JR (1999) Principles of fluorescence spectroscopy (second edition). Springer, Heidelberg

  • Laptenok SP, Borst JW, Mullen KM, van Stokkum IH, Visser AJ, van Amerongen H (2010) Global analysis of Forster resonance energy transfer in live cells measured by fluorescence lifetime imaging microscopy exploiting the rise time of acceptor fluorescence. Phys Chem Chem Phys 12(27):7593–7602

    Article  CAS  PubMed  Google Scholar 

  • Laptenok SP, Snellenburg JJ, Bucherl CA, Konrad KR, Borst JW (2014) Global analysis of FRET-FLIM data in live plant cells. Methods Mol Biol 1076:481–502

    Article  PubMed  Google Scholar 

  • Leung BO, Chou KC (2011) Review of super-resolution fluorescence microscopy for biology. Appl Spectrosc 65(9):967–980

    Article  CAS  PubMed  Google Scholar 

  • Millis BA (2012) Evanescent-wave field imaging: an introduction to total internal reflection fluorescence microscopy. Methods Mol Biol 823:295–309

    Article  CAS  PubMed  Google Scholar 

  • Morton PE, Parsons M (2011) Measuring FRET using time-resolved FLIM. Methods Mol Biol 769:403–413

    Article  CAS  PubMed  Google Scholar 

  • Nair DK, Jose M, Kuner T, Zuschratter W, Hartig R (2006) FRET-FLIM at nanometer spectral resolution from living cells. Opt Express 14(25):12217–12229

    Article  PubMed  Google Scholar 

  • Nakabayashi T, Oshita S, Sumikawa R, Sun F, Kinjo M, Ohta N (2012) pH dependence of the fluorescence lifetime of enhanced yellow fluorescent protein in solution and cells. J Photochem Photobiol Chem 235:65–71

    Article  CAS  Google Scholar 

  • Ntoukakis V, Schwessinger B, Segonzac C, Zipfel C (2011) Cautionary notes on the use of C-terminal BAK1 fusion proteins for functional studies. Plant Cell 23(11):3871–3878

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peter M, Ameer-Beg SM, Hughes MK, Keppler MD, Prag S, Marsh M, Vojnovic B, Ng T (2005) Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions. Biophys J 88(2):1224–1237

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Redford GI, Clegg RM (2005) Polar plot representation for frequency-domain analysis of fluorescence lifetimes. J Fluoresc 15(5):805–815

    Article  CAS  PubMed  Google Scholar 

  • Ries J, Kaplan C, Platonova E, Eghlidi H, Ewers H (2012) A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nat Methods 9(6):582–584

    Article  CAS  PubMed  Google Scholar 

  • Russinova E, Borst JW, Kwaaitaal M, Cano-Delgado A, Yin Y, Chory J, de Vries SC (2004) Heterodimerization and endocytosis of Arabidopsis brassinosteroid receptors BRI1 and AtSERK3 (BAK1). Plant Cell 16(12):3216–3229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schleifenbaum F, Elgass K, Sackrow M, Caesar K, Berendzen K, Meixner AJ, Harter K (2010) Fluorescence intensity decay shape analysis microscopy (FIDSAM) for quantitative and sensitive live-cell imaging: a novel technique for fluorescence microscopy of endogenously expressed fusion-proteins. Mol Plant 3(3):555–562

    Article  CAS  PubMed  Google Scholar 

  • Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2(12):905–909

    Article  CAS  PubMed  Google Scholar 

  • Siegel J, Elson DS, Webb SE, Lee KC, Vlandas A, Gambaruto GL, Leveque-Fort S, Lever MJ, Tadrous PJ, Stamp GW, Wallace AL, Sandison A, Watson TF, Alvarez F, French PM (2003) Studying biological tissue with fluorescence lifetime imaging: microscopy, endoscopy, and complex decay profiles. Appl Opt 42(16):2995–3004

    Article  PubMed  Google Scholar 

  • Stahl Y, Grabowski S, Bleckmann A, Kuhnemuth R, Weidtkamp-Peters S, Pinto KG, Kirschner GK, Schmid JB, Wink RH, Hulsewede A, Felekyan S, Seidel CA, Simon R (2013) Moderation of Arabidopsis root stemness by CLAVATA1 and ARABIDOPSIS CRINKLY4 receptor kinase complexes. Curr Biol 23(5):362–371

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Day RN, Periasamy A (2011) Investigating protein-protein interactions in living cells using fluorescence lifetime imaging microscopy. Nat Protoc 6(9):1324–1340

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thaler C, Koushik SV, Blank PS, Vogel SS (2005) Quantitative multiphoton spectral imaging and its use for measuring resonance energy transfer. Biophys J 89(4):2736–2749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van Munster EB, Gadella TW (2005) Fluorescence lifetime imaging microscopy (FLIM). Adv Biochem Eng Biotechnol 95:143–175

    PubMed  Google Scholar 

  • Visser AJ, Laptenok SP, Visser NV, van Hoek A, Birch DJ, Brochon JC, Borst JW (2010) Time-resolved FRET fluorescence spectroscopy of visible fluorescent protein pairs. Eur Biophys J 39(2):241–253

    Article  CAS  PubMed  Google Scholar 

  • Wombacher R, Cornish VW (2011) Chemical tags: applications in live cell fluorescence imaging. J Biophotonics 4(6):391–402

    Article  CAS  PubMed  Google Scholar 

  • Wouters FS, Bastiaens PI (2001) Imaging protein-protein interactions by fluorescence resonance energy transfer (FRET) microscopy. Curr Protoc Cell Biol Chapter 17:Unit 17.1

  • Xia ZP, Liu YH (2001) Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes. Biophys J 81(4):2395–2402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yasuda R (2006) Imaging spatiotemporal dynamics of neuronal signaling using fluorescence resonance energy transfer and fluorescence lifetime imaging microscopy. Curr Opin Neurobiol 16(5):551–561

    Article  CAS  PubMed  Google Scholar 

  • Zelazny E, Borst JW, Muylaert M, Batoko H, Hemminga MA, Chaumont F (2007) FRET imaging in living maize cells reveals that plasma membrane aquaporins interact to regulate their subcellular localization. Proc Natl Acad Sci U S A 104(30):12359–12364

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Willem Borst.

Additional information

Handling Editor: David Robinson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bücherl, C.A., Bader, A., Westphal, A.H. et al. FRET-FLIM applications in plant systems. Protoplasma 251, 383–394 (2014). https://doi.org/10.1007/s00709-013-0595-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-013-0595-7

Keywords

Navigation