Skip to main content
Log in

Effects of Refractive Index and Viscosity on Fluorescence and Anisotropy Decays of Enhanced Cyan and Yellow Fluorescent Proteins

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The fluorescence lifetime strongly depends on the immediate environment of the fluorophore. Time-resolved fluorescence measurements of the enhanced forms of ECFP and EYFP in water–glycerol mixtures were performed to quantify the effects of the refractive index and viscosity on the fluorescence lifetimes of these proteins. The experimental data show for ECFP and EYFP two fluorescence lifetime components: one short lifetime of about 1 ns and a longer lifetime of about 3.7 ns of ECFP and for EYFP 3.4. The fluorescence of ECFP is very heterogeneous, which can be explained by the presence of two populations: a conformation (67% present) where the fluorophore is less quenched than in the other conformation (33% present). The fluorescence decay of EYFP is much more homogeneous and the amplitude of the short fluorescence lifetime is about 5%. The fluorescence anisotropy decays show that the rotational correlation time of both proteins scales with increasing viscosity of the solvent similarly as shown earlier for GFP. The rotational correlation times are identical for ECFP and EYFP, which can be expected since both proteins have the same shape and size. The only difference observed is the slightly lower initial anisotropy for ECFP as compared to the one of EYFP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Y. Tsien (1998). The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544.

    CAS  PubMed  Google Scholar 

  2. A. Miyawaki, A. Sawano, and T. Takako (2003). Lighting up cells: Labeling proteins with fluorophores. Suppl. Nature Cell Biol. 5, S1–S7.

    Google Scholar 

  3. M. A. Hink, N. V. Visser, J. W. Borst, A. van Hoek, and A. J. W. G. Visser (2003). Practical use of corrected fluorescence excitation and emission spectra of fluorescent proteins in Förster Resonance Energy Transfer (FRET) studies. J. Fluoresc. 13, 185–188.

    CAS  Google Scholar 

  4. K. Suhling, J. Siegel, D. Phillips, P. M. W. French, S. Lévêque-Fort, S. E. D. Webb, and D. M. Davis (2002). Imaging the environment of green fluorescent protein. Biophys. J. 83, 3589–3595.

    CAS  PubMed  Google Scholar 

  5. S. J. Strickler and R. A. Berg (1962). Relationship between absorption intensity and fluorescence lifetime of molecules. J. Chem. Phys. 37, 814–820.

    CAS  Google Scholar 

  6. D. Toptygin, R. S. Savtchenko, N. D. Meadow, S. Roseman, and L. Brand (2002). Effect of solvent refractive index on the excited-state lifetime of a single tryptophan residue in a protein. J. Phys. Chem. B. 106, 3724–3734.

    CAS  Google Scholar 

  7. K. Suhling, D. M. Davis, and D. Phillips (2002). The influence of solvent viscosity on the fluorescence decay and time-resolved anisotropy of green fluorescent protein., J. Fluoresc. 12, 91–95.

    CAS  Google Scholar 

  8. A. Szabo (1984) Theory of fluorescence depolarization in macromolecules and membranes. J. Chem. Phys. 81, 150–167.

    CAS  Google Scholar 

  9. J. R. Lakowicz (1999). Principles of Fluorescence Spectroscopy, 2nd ed., Kluwer Academic/Plenum Publishers, New York.

  10. M. A. Uskova, J. W. Borst, A. van Hoek, A. Schots, N. L. Klyachko, and A. J. W. G. Visser (2000). Fluorescence dynamics of green fluorescent proteins in AOT reversed micelles. Biophys. Chem. 87, 73–84.

    CAS  PubMed  Google Scholar 

  11. A. Volkmer, V. Subramanian, D. J. S. Birch, and T. M. Jovin (2000). One- and two-photon excited fluorescence lifetimes and anisotropy decays of green fluorescent proteins. Biophys. J. 78, 1589–1598.

    CAS  PubMed  Google Scholar 

  12. N. V. Visser, M. A. Hink, J. W. Borst, G. N. M. van der Krogt, and A. J. W. G. Visser (2002). Circular dichroism spectroscopy of fluorescent proteins. FEBS Lett. 521, 31–35.

    CAS  PubMed  Google Scholar 

  13. K. Vos, A. van Hoek, and A. J. W. G. Visser (1987). Application of a reference deconvolution method to tryptophan fluorescence in proteins. A refined description of rotational dynamics. Eur. J. Biochem. 165, 55–63.

    CAS  PubMed  Google Scholar 

  14. A. van Hoek and A. J. W. G. Visser (1985). Artefact and distortion sources in time correlated single photon counting. Anal. Instrum. 14, 359–378.

    CAS  Google Scholar 

  15. A. V. Digris, V. V. Skakun, E. G. Novikov, A. van Hoek, A. Claiborne, and A. J. W. G. Visser (1999). Thermal stability of a flavoprotein assessed from associative analysis of polarized time-resolved fluorescence spectroscopy. Eur. Biophys. J. 28, 526–531.

    CAS  PubMed  Google Scholar 

  16. A. van Hoek, K. Vos, and A. J. W. G. Visser (1987). Ultrasensitive time-resolved polarized fluorescence spectroscopy as a tool in biology and medicine. IEEE J. Quant. Electron. QE-23, 1812–1820.

    CAS  Google Scholar 

  17. J. M. Beechem, E. Gratton, M. Ameloot, J. R. Knutson, and L. Brand (1991). The global analysis of fluorescence intensity and anisotropy decay data: Second generation theory and programs. in J. R. Lakowicz (Ed.), Topics in Fluorescence Spectroscopy, Plenum Press, New York, pp. 241–305.

    Google Scholar 

  18. M. Tramier, I. Gautier, T. Piolot, S. Ravalet, K. Kemnitz, J. Coppey, C. Durieux, V. Mignotte, and M. Coppey-Moisan (2002). Picosecond-hetero-FRET microscopy to probe protein–protein interactions in live cells. Biophys. J. 83, 3570–3577.

    CAS  PubMed  Google Scholar 

  19. M. A. Rizzo, G. H. Springer, B. Granada, and D. W. Piston (2004). An improved cyan fluorescent protein variant useful for FRET. Nature Biotechnol. 22, 445–449.

    CAS  Google Scholar 

  20. S. Habuchi, M. Cotlet, J. Hofkens, G. Dirix, J. Michiels, J. Vanderleyden, V. Subramanian, and F. C. De Schryver (2002). Resonance energy transfer in a calcium concentration-dependent cameleon protein. Biophys. J. 83, 3499–3506.

    CAS  PubMed  Google Scholar 

  21. J. Hyun Bae, M. Rubini, G. Jung, G. Wiegand, M. H. J. Seifert, M. K. Azim, J.-S. Kim, A. Zumbusch, T. A. Holak, L. Moroder, R. Huber, and N. Budisa (2003). Expansion of the genetic code enables design of a novel “gold” class of green fluorescent proteins. J. Mol. Biol. 328, 1071–1081.

    PubMed  Google Scholar 

  22. J. W. Borst, M. A. Hink, A. van Hoek, and A. J. W. G. Visser (2003). Multiphoton microspectroscopy in living plant cells. Proc. SPIE 4963, 231–238.

    CAS  Google Scholar 

  23. F. S. Wouters, P. J. Verveer, and P. I. H. Bastiaens (2001). Imaging biochemistry inside cells. Trends Cell Biol. 11, 203–210.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonie J. W. G. Visser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borst, J.W., Hink, M.A., van Hoek, A. et al. Effects of Refractive Index and Viscosity on Fluorescence and Anisotropy Decays of Enhanced Cyan and Yellow Fluorescent Proteins. J Fluoresc 15, 153–160 (2005). https://doi.org/10.1007/s10895-005-2523-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-005-2523-5

Keywords

Navigation