Skip to main content
Log in

Polar Plot Representation for Frequency-Domain Analysis of Fluorescence Lifetimes

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

We present applications of polar plots for analyzing fluorescence lifetime data acquired in the frequency domain. This graphical, analytical method is especially useful for rapid FLIM measurements. The usual method for sorting out and determining the underlying lifetime components from a complex fluorescence signal is to carry out the measurement at multiple frequencies. When it is not possible to measure at more than one frequency, such as rapid lifetime imaging, specific features of the polar plot analysis yield valuable information, and provide a diagnostic visualization of the participating fluorescent species underlying a complex lifetime distributions. Data are presented where this polar plot presentation is useful to derive valuable, unique information about the underlying component distributions. We also discuss artifacts of photolysis and how this method can also be applied to samples where each fluorescence species shows a continuous distribution of lifetimes. Polar plots of frequency-domain data are commonly used for analysis of dielectric relaxation experiments (Cole–Cole plots), which have proved to be exceptionally useful in that field for decades. We compare this analytical tool that is well developed and extensively used in dielectric relaxation and chemical kinetics to fluorescence measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. V. O’Conner and D. Phillips (1984). Time-correlated Single Photon Counting, Academic Press, London.

    Google Scholar 

  2. D. W. Piston, G. Marriott, T. Radivoyevich, R. M. Clegg, T. M. Jovin, and E. Gratton (1989). Wide-band acousto-optic light modulator for frequency domain fluorometry and phosphorimetry. Rev. Sci. Instrum. 60, 2596–600.

    Article  CAS  Google Scholar 

  3. B. Valeur (2002). Molecular Fluorescence Principles and Applications, Wiley VCH, New York.

  4. R. D. Spencer and G. Weber (1969). Measurements of subnanosecond fluorescence lifetime with a cross-correlation phase fluorometer. Ann. Acad. Sci. 158, 361–76.

    Article  CAS  Google Scholar 

  5. E. Gratton, D. M. Jameson, and R. Hall (1984). Multifrequency phase and modulation fluorometry. Ann. Rev. Biophys. Bioeng. 13, 105–124.

    Article  CAS  Google Scholar 

  6. R. M. Clegg and P. C. Schneider (1996). Fluorescence Lifetime-resolved Imaging Microscopy: a general description of the lifetime-resolved imaging measurements. in J. Slavik (Ed.), Fluorescence Microscopy and Fluorescent Probes, Plenum Press, New York, pp. 15–33.

    Google Scholar 

  7. G. Redford and R. M. Clegg (2005). Chapter 11: Real-time fluorescence lifetime imaging and FRET using fast gated image intensifiers. In A. Periasamy and R. N. Day (Ed.), Molecular Imaging: FRET Microscopy, American Physiological Society Methods in Physiology Series, Oxford University Press, Oxford, pp. 193–226.

  8. G. Redford (2003). Rapid lifetime imaging. In Biophysical Society Meeting (Vol 84, No. 2), San Antonio, TX.

  9. Z. Majumdar, J. D. B. Sutin, and R. M. Clegg (2003), Microsecond kinetics in a continuous flow turbulent mixer- detection with fluorescence intensity and fluorescence lifetime imaging. In 34th Annual Meeting of the Biophysical Society. Biophys. J. 84(2).

  10. C. J. F. Bottcher and P. Bordewijk (1978). Theory of electric polarization. In Dielectrics in Time-Dependent Fields, 2nd ed., Vol. II, Elsevier, New York.

  11. N. E. Hill et al. (1969). Dielectric Properties and Molecular Behavior, van Nostrand Reinhold Company, New York, p. 480.

    Google Scholar 

  12. J. L. Ribeiro and L. G. Vieira (2003). The factorized form for dielectric relaxation. Eur. Phys. J. B 36, 21–26.

    Article  CAS  Google Scholar 

  13. Y.-Z. Wei and S. Sridhar (1993). A new graphical representation for dielectric data. J. Chem. Phys. 99(4), 3119–3124.

    Article  CAS  Google Scholar 

  14. A. K. Jonscher (1983). Dielectric Relaxation in Solids, Chelsea Dielectrics Press, London.

    Google Scholar 

  15. G. G. Raju (2003). Dielectrics in electric fields. in H. L. Willis (Ed.), Power Engineering, Marcel Dekker, New York, p. 578.

  16. F. H. Mueller (Ed.) (1953). Das Relaxationsverhalten der Materie: 2. Marburger Diskussionstagung. In Sonderausgabe der Kolloid-Zeitschrift, Vol. 134, Darmstadt, Dr. Dietrich Steinkopft, p. 224.

  17. K. Bergmann, D. M. Roberti, and C. P. Smyth (1960). Analysis in terms of two relaxation times for some aromatic ethers. Microwave Absorption and Molecular Structure in Liquids, Vol. XXXI, p. 665.

  18. A. H. A. Clayton, Q. S. Hanley, and P. J. Verveer (2004). Graphical representation and multicomponent analysis of single-frequency fluorescence lifetime imaging microscopy data. J. Microsc. 213(1), 1–5.

    Article  CAS  PubMed  Google Scholar 

  19. D. M. Jameson, E. Gratton, and R. D. Hall (1984). The measurement and analysis of heterogeneous emissions by multifrequency phase and modulation fluorometry. Appl. Spectrosc. Rev. 20(1), 55–106.

    Article  CAS  Google Scholar 

  20. J. B. Birks and I. H. Munro (1967). Prog. React. Kinet. 4, 239.

    CAS  Google Scholar 

  21. R. S. Becker (1969). Theory and Interpretation of Fluorescence and Phosphorescence, Wiley Interscience, New York, p. 283.

    Google Scholar 

  22. T. Förster (1951). Fluoreszenz Organischer Verbindungen, Göttingen, Vandenhoeck & Ruprecht, p. 315.

  23. J. R. Lakowicz (1999). Principles of Fluorescence Spectroscopy, 2nd ed., Kluwer Academic/Plenum, New York.

    Google Scholar 

  24. D. J. S. Birch and R. E. Imhof (1991). Time-domain fluorescence spectroscopy using time-correlated single-photon counting. in J. Lackowicz (Ed.), Topics in Fluorescence Spectroscopy, Plenum Press, New York, pp. 1–88.

    Google Scholar 

  25. M. J. Cole et al. (2001). Time-domain whole-field fluorescence lifetime imaging with optical sectioning. J. Microsc. 203(3), 246–257.

    Article  CAS  PubMed  Google Scholar 

  26. K. Dowling et al. (1999). High resolution time-domain fluorescence lifetime imaging for biomedical applications. J. Modern Optics 46(2), 199–209.

    CAS  Google Scholar 

  27. P. F. Gottling (1923). The determination of the time between excitation and emission for certain fluorescent solids. Phys. Rev. 22, 566–573.

    Article  CAS  Google Scholar 

  28. R. B. Cundall and R. E. Dale (Eds.) (1983). Time-resolved fluorescence spectroscopy in biochemistry and biology. in F. Nato (Ed.), NATO ASI Series. Series A, Life Sciences, Vol. 69, Advanced Study Institute on Time-Resolved Fluorescence Spectroscopy in Biochemistry and Biology, Saint Andrews, 1980, Plenum Press, New York, p. 785.

  29. F. Dushinsky (1993). Z. Phys. 81, 7–21.

    Google Scholar 

  30. J. B. Birks and D. J. Dawson (1961). J. Sci. Instrum. 38, 262.

    Article  Google Scholar 

  31. T. W. J. Gadella, T. M. Jovin, and R. M. Clegg (1993). Fluorescence lifetime imaging microscopy (FLIM)-Spatial resolution of microstructures on the nanosecond time scale. Bioimaging 2, 139–59.

    Article  Google Scholar 

  32. T. W. J. J. Gadella, R. M. Clegg, and T. M. Jovin (2001). Fluorescence lifetime imaging microscopy: Pixel-by-pixel analysis of phase-modulation data. Bioimaging 2(3), 139–59.

    Article  Google Scholar 

  33. M. J. Booth and T. Wilson (2004). Low-cost, frequency-domain, fluorescence lifetime confocal microscopy. J. Microsc. 214(1), 36–42.

    Article  CAS  PubMed  Google Scholar 

  34. O. Holub et al. (2000). Fluorescence lifetime-resolved imaging (FLI) in real-time—A new technique in photosynthetic research. Photosynthetica 38(4), 581–599.

    Article  CAS  Google Scholar 

  35. V. Squire and Bastiaens (2000). Multiple frequency fluorescence lifetime imaging microscopy. J. Microsc. 197(2), 136–149.

    Article  CAS  PubMed  Google Scholar 

  36. R. M. Clegg, O. Holub, and C. Gohlke (2003). Fluorescence lifetime-resolved imaging: Measuring lifetimes in an image. Meth. Enzymol. 360, 509–542.

    Article  CAS  PubMed  Google Scholar 

  37. P. I. H. Bastiaens and A. Squire (1999). Fluorescence lifetime imaging microscopy: Spatial resolution of biochemical processes in the cell. Trends Cell Biol. 9(2), 48–52.

    Article  CAS  PubMed  Google Scholar 

  38. K. S. Cole and R. H. Cole (1941). Dispersion and absorption in dielectrics. J. Chem. Phys. 9, 341.

    Article  CAS  Google Scholar 

  39. Z. Majumdar, J. D. B. Sutin, and R. M. Clegg (2005). A micro-fabricated continuous-flow turbulent mixer for the study of fast reaction kinetics, manuscript in press, Review of Scientific Instruments.

  40. G. I. Redford, Z. K. Majumdar, J. D. B. Sutin, and R. M. Clegg (2005). Properties of microfluidic turbulent mixing, revealed by fluorescence lifetime imaging, manuscript in press, Journal of Chemical Physics.

  41. K. S. Cole (1928). Electrical impedence of suspensions of spheres. J. Gen. Physiol. 12, 29–54.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Clegg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Redford, G.I., Clegg, R.M. Polar Plot Representation for Frequency-Domain Analysis of Fluorescence Lifetimes. J Fluoresc 15, 805–815 (2005). https://doi.org/10.1007/s10895-005-2990-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-005-2990-8

Keywords

Navigation