Skip to main content
Log in

Light-dependent regulation of the jasmonate pathway

  • Review Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Jasmonates (JAs) are plant hormones which are crucial for the response of plants to several biotic and abiotic stresses. Beside this important function, they are involved in several developmental processes throughout plant life. In this short review, we would like to summarize the recent findings about the function of JAs in photomorphogenesis with a main focus on the model plant rice. Early plant development is determined to a large extent by light. Depending on whether seedlings are raised in darkness or in light, they show a completely different appearance which led to the terms skoto- and photomorphogenesis, respectively. The different appearance depending on the light conditions has been used to screen for mutants in photoperception and signalling. By this approach, mutants for several photoreceptors and in the downstream signalling pathways could be isolated. In rice, we and others isolated mutants with a very intriguing phenotype. The mutated genes have been cloned by map-based cloning, and all of them encode for JA biosynthesis genes. The most bioactive form of JAs identified so far is the amino acid conjugate jasmonoyl-isoleucin (JA-Ile). In order to conjugate JA to Ile, an enzyme of the GH3 family, JASMONATE RESISTANT 1, is required. We characterized mutants of OsJAR1 on a physiological and biochemical level and found evidence for redundantly active enzymes in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acosta IF, Farmer EE (2010) Jasmonates. Arabidopsis Book 8:e0129

    PubMed  Google Scholar 

  • Acosta IF, Laparra H, Romero SP, Schmelz E, Hamberg M, Mottinger JP, Moreno MA, Dellaporta SL (2009) Tasselseed1 is a lipoxygenase affecting jasmonic acid signaling in sex determination of maize. Science 323:262–265

    Article  PubMed  CAS  Google Scholar 

  • Ballare CL, Scopel AL, Stapleton AE, Yanovsky MJ (1996) Sola ultraviolet-B radiation affects seedling emergence, DNA integrity, plant morphology, growth rate, and attractiveness to herbivore insects in Datura ferox. Plant Physiol (Rockville) 112:161–170

    CAS  Google Scholar 

  • Biswas KK, Neumann R, Haga K, Yatoh O, Iino M (2003) Photomorphogenesis of rice seedlings: a mutant impaired in phytochrome-mediated inhibition of coleoptile growth. Plant Cell Physiol 44:242–254

    Article  PubMed  CAS  Google Scholar 

  • Blechert S, Brodschelm W, Holder S, Kammerer L, Kutchan TM, Mueller MJ, Xia ZQ, Zenk MH (1995) The octadecanoic pathway—signal molecules for the regulation of secondary pathways. Proc Natl Acad Sci U S A 92:4099–4105

    Article  PubMed  CAS  Google Scholar 

  • Bottcher C, Weiler EW (2007) cyclo-Oxylipin-galactolipids in plants: occurrence and dynamics. Planta 226:629–637

    Article  PubMed  Google Scholar 

  • Brückner C, Kramell R, Schneider G, Knofel HD, Sembdner G, Schreiber K (1986) N-[(−)-Jasmonoyl]-S-tyrosine—a conjugate of jasmonic acid from Vicia faba. Phytochemistry 25:2236–2237

    Article  Google Scholar 

  • Brückner C, Kramell R, Schneider G, Schmidt J, Preiss A, Sembdner G, Schreiber K (1988) N-Levo Jasmonoyl-S-tryptophan and a related tryptophan conjugate from Vicia faba. Phytochemistry (Oxford) 27:275–276

    Article  Google Scholar 

  • Carvalho RF, Campos ML, Azevedo RA (2011) The role of phytochrome in stress tolerance. J Integr Plant Biol 53:920–929

    Article  PubMed  CAS  Google Scholar 

  • Cerrudo I, Keller MM, Cargnel MD, Demkura PV, de Wit MD, Patitucci MS, Pierik R, Pieterse CM, Ballare CL (2012) Low red: far-red ratios reduce Arabidopsis resistance to Botrytis cinerea and jasmonate responses via a COI1-JAZ10-dependent, salicylic acid-independent mechanism. Plant Physiol 158:2042–2052

    Google Scholar 

  • Chen I-C, Huang IC, Liu M-J, Wang Z-G, Chung S-S, Hsieh H-L (2007) Glutathione S-transferase interacting with far-red insensitive 219 is involved in phytochrome A-mediated signaling in Arabidopsis. Plant Physiol (Rockville) 143:1189–1202

    Article  CAS  Google Scholar 

  • Chini A, Fonseca S, Fernandez G, Adie B, Chico JM, Lorenzo O, Garcia-Casado G, Lopez-Vidriero I, Lozano FM, Ponce MR, Micol JL, Solano R (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature (London) 448:666

    Article  CAS  Google Scholar 

  • Chung HS, Howe GA (2009) A critical role for the TIFY motif in repression of jasmonate signaling by a stabilized splice variant of the JASMONATE ZIM-domain protein JAZ10 in Arabidopsis. Plant Cell 21:131–145

    Article  PubMed  CAS  Google Scholar 

  • Clouse SD (2011) Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development. Plant Cell 23:1219–1230

    Article  PubMed  CAS  Google Scholar 

  • Dathe W, Roensch H, Preiss A, Schade W, Sembdner G, Schreiber K (1981) Endogenous plant hormones of the broad bean Vicia faba cultivar fribo levo jasmonic acid a plant growth inhibitor in pericarp. Planta (Heidelberg) 153:530–535

    Article  CAS  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Weijers D, Karunarathna N, Jurgens G, Estelle M (2007) AXL and AXR1 have redundant functions in RUB conjugation and growth and development in Arabidopsis. Plant J 52:114–123

    Article  PubMed  CAS  Google Scholar 

  • Falkenstein E, Groth B, Mithofer A, Weiler EW (1991) Methyljasmonate and alpha-linolenic acid are potent inducers of tendril coiling. Planta 185:316–322

    Article  CAS  Google Scholar 

  • Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R (2009) (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol 5:344–350

    Article  PubMed  CAS  Google Scholar 

  • Furuya M, Pjon CJ, Fujii T, Ito M (1969) Phytochrome action in Oryza sativa L. III. The separation of photo perceptive site and growing zone in coleoptiles and auxin transport as effector system. Dev Growth Differ 11:62–76

    Article  PubMed  CAS  Google Scholar 

  • Galis I, Gaquerel E, Pandey SP, Baldwin IT (2009) Molecular mechanisms underlying plant memory in JA-mediated defence responses. Plant Cell Environ 32:617–627

    Article  PubMed  CAS  Google Scholar 

  • Gapper NE, Norris GE, Clarke SF, Lill RE, Jameson PE (2002) Novel jasmonate amino acid conjugates in Asparagus officinalis during harvest-induced and natural foliar senescence. Physiol Plant 114:116–124

    Article  PubMed  CAS  Google Scholar 

  • Glauser G, Grata E, Dubugnon L, Rudaz S, Farmer EE, Wolfender JL (2008) Spatial and temporal dynamics of jasmonate synthesis and accumulation in Arabidopsis in response to wounding. J Biol Chem 283:16400–16407

    Article  PubMed  CAS  Google Scholar 

  • Glauser G, Dubugnon L, Mousavi SA, Rudaz S, Wolfender JL, Farmer EE (2009) Velocity estimates for signal propagation leading to systemic jasmonic acid accumulation in wounded Arabidopsis. J Biol Chem 284:34506–34513

    Article  PubMed  CAS  Google Scholar 

  • Grebe M (2011) Out of the shade and into the light. Nat Cell Biol 13:347–349

    Article  PubMed  CAS  Google Scholar 

  • Guranowski A, Miersch O, Staswick PE, Suza W, Wasternack C (2007) Substrate specificity and products of side-reactions catalyzed by jasmonate:amino acid synthetase (JAR1). FEBS Lett 581:815–820

    Article  PubMed  CAS  Google Scholar 

  • Gutjahr C, Riemann M, Muller A, Duchting P, Weiler EW, Nick P (2005) Cholodny-Went revisited: a role for jasmonate in gravitropism of rice coleoptiles. Planta 222:575–585

    Article  PubMed  CAS  Google Scholar 

  • Haga K, Iino M (2004) Phytochrome-mediated transcriptional up-regulation of allene oxide synthase in rice seedlings. Plant Cell Physiol 45:119–128

    Article  PubMed  CAS  Google Scholar 

  • He G, Tarui Y, Iino M (2005) A novel receptor kinase involved in jasmonate-mediated wound and phytochrome signaling in maize coleoptiles. Plant Cell Physiol 46:870–883

    Article  PubMed  CAS  Google Scholar 

  • Heitz T, Widemann E, Lugan R, Miesch L, Ullmann P, Desaubry L, Holder E, Grausem B, Kandel S, Miesch M, Werck-Reichhart D, Pinot F (2012) Cytochromes P450 CYP94C1 and CYP94B3 catalyze two successive oxidation steps of plant hormone jasmonoyl-isoleucine for catabolic turnover. J Biol Chem 287:6296–6306

    Article  PubMed  CAS  Google Scholar 

  • Hirose F, Shinomura T, Tanabata T, Shimada H, Takano M (2006) Involvement of rice cryptochromes in de-etiolation responses and flowering. Plant Cell Physiol 47:915–925

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann M, Hentrich M, Pollmann S (2011) Auxin-oxylipin crosstalk: relationship of antagonists(f). J Integr Plant Biol 53:429–445

    Article  PubMed  CAS  Google Scholar 

  • Howe GA, Lee GI, Itoh A, Li L, DeRocher AE (2000) Cytochrome P450-dependent metabolism of oxylipins in tomato. Cloning and expression of allene oxide synthase and fatty acid hydroperoxide lyase. Plant Physiol (Rockville) 123:711–724

    Article  CAS  Google Scholar 

  • Hsieh H-L, Okamoto H, Wang M, Ang L-H, Matsui M, Goodman H, Deng XW (2000) FIN219, an auxin-regulated gene, defines a link between phytochrome A and the downstream regulator COP1 in light control of Arabidopsis development. Genes Dev 14:1958–1970

    PubMed  CAS  Google Scholar 

  • Hu Z, Yan H, Yang J, Yamaguchi S, Maekawa M, Takamure I, Tsutsumi N, Kyozuka J, Nakazono M (2010) Strigolactones negatively regulate mesocotyl elongation in rice during germination and growth in darkness. Plant Cell Physiol 51:1136–1142

    Article  PubMed  CAS  Google Scholar 

  • Ishiguro S, Kawai-Oda A, Ueda J, Nishida I, Okada K (2001) The DEFECTIVE IN ANTHER DEHISCIENCE gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13:2191–2209

    PubMed  CAS  Google Scholar 

  • Izaguirre MM, Scopel AL, Baldwin IT, Ballare CL (2003) Convergent responses to stress. Solar ultraviolet-B radiation and Manduca sexta herbivory elicit overlapping transcriptional responses in field-grown plants of Nicotiana longiflora. Plant Physiol (Rockville) 132:1755–1767

    Article  CAS  Google Scholar 

  • Izaguirre MM, Mazza CA, Svatos A, Baldwin IT, Ballare CL (2007) Solar ultraviolet-B radiation and insect herbivory trigger partially overlapping phenolic responses in Nicotiana attenuata and Nicotiana longiflora. Ann Bot (London) 99:103–109

    Article  CAS  Google Scholar 

  • Jain M, Kaur N, Tyagi AK, Khurana JP (2006) The auxin-responsive GH3 gene family in rice (Oryza sativa). Funct Integr Genomics 6:36–46

    Article  PubMed  CAS  Google Scholar 

  • Kazan K, Manners JM (2011) The interplay between light and jasmonate signalling during defence and development. J Exp Bot. doi:10.1093/jxb/err142

  • Koda Y, Kikuta Y, Kitahara T, Nishi T, Mori K (1992) Comparisons of various biological activities of stereoisomers of methyl jasmonate. Phytochemistry (Oxford) 31:1111–1114

    Article  CAS  Google Scholar 

  • Koo AJ, Howe GA (2009) The wound hormone jasmonate. Phytochemistry 70:1571–1580

    Article  PubMed  CAS  Google Scholar 

  • Koo AJK, Cooke TF, Howe GA (2011) Cytochrome P450 CYP94B3 mediates catabolism and inactivation of the plant hormone jasmonoyl-L-isoleucine. Proc Natl Acad Sci U S A 108:9298–9303

    Article  PubMed  CAS  Google Scholar 

  • Kourtchenko O, Andersson MX, Hamberg M, Brunnstrom A, Gobel C, McPhail KL, Gerwick WH, Feussner I, Ellerstrom M (2007) Oxo-phytodienoic acid-containing galactolipids in Arabidopsis: jasmonate signaling dependence. Plant Physiol 145:1658–1669

    Article  PubMed  CAS  Google Scholar 

  • Kramell R, Schmidt J, Herrmann G, Schliemann W (2005) N-(jasmonoyl)tyrosine-derived compounds from flowers of broad beans (Vicia faba). J Nat Prod 68:1345–1349

    Article  PubMed  CAS  Google Scholar 

  • Laudert D, Hollaender-Czytko H, Weiler EW (1996) Molecular cloning and characterization of Arabidopsis thaliana allene oxide synthase, the first committed enzyme of the octadecanoid pathway to jasmonates. Plant Physiol (Rockville) 111:46

    Google Scholar 

  • Miyao A, Tanaka K, Murata K, Sawaki H, Takeda S, Abe K, Shinozuka Y, Onosato K, Hirochika H (2003) Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome. Plant Cell 15:1771–1780

    Article  PubMed  Google Scholar 

  • Moreno JE, Tao Y, Chory J, Ballare CL (2009) Ecological modulation of plant defense via phytochrome control of jasmonate sensitivity. Proc Natl Acad Sci U S A 106:4935–4940

    Article  PubMed  CAS  Google Scholar 

  • Pan Z, Durst F, Werck-Reichhart D, Gardner HW, Camara B, Cornish K, Backhaus RA (1995) The major protein of guayule rubber particles is a cytochrome P450: characterization based on cDNA cloning and spectroscopic analysis of the solubilized enzyme and its reaction products. J Biol Chem 270:8487–8494

    Article  PubMed  CAS  Google Scholar 

  • Pauwels L, Barbero GF, Geerinck J, Tilleman S, Grunewald W, Perez AC, Chico JM, Vanden Bossche R, Sewell J, Gil E, Garcia-Casado G, Witters E, Inze D, Long JA, De Jaeger G, Solano R, Goossens A (2010) NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature (London) 464:788

    Article  CAS  Google Scholar 

  • Pjon CJ, Furuya M (1967) Phytochrome action in Oryza sativa L. I. Growth responses of etiolated coleoptiles to red far-red and blue light. Plant Cell Physiol 8:709

    Google Scholar 

  • Radhika V, Kost C, Mithofer A, Boland W (2010) Regulation of extrafloral nectar secretion by jasmonates in lima bean is light dependent. Proc Natl Acad Sci U S A 107:17228–17233

    Article  PubMed  CAS  Google Scholar 

  • Reymond P, Farmer EE (1998) Jasmonate and salicylate as global signals for defense gene expression. Curr Opin Plant Biol 1:404–411

    Article  PubMed  CAS  Google Scholar 

  • Riemann M, Muller A, Korte A, Furuya M, Weiler EW, Nick P (2003) Impaired induction of the jasmonate pathway in the rice mutant hebiba. Plant Physiol 133:1820–1830

    Article  PubMed  CAS  Google Scholar 

  • Riemann M, Riemann M, Takano M (2008) Rice JASMONATE RESISTANT 1 is involved in phytochrome and jasmonate signalling. Plant Cell Environ 31:783–792

    Article  PubMed  CAS  Google Scholar 

  • Robson F, Okamoto H, Patrick E, Harris S-R, Wasternack C, Brearley C, Turner JG (2010) Jasmonate and phytochrome A signaling in Arabidopsis wound and shade responses are integrated through JAZ1 stability. Plant Cell 22:1143–1160

    Article  PubMed  CAS  Google Scholar 

  • Santner A, Estelle M (2009) Recent advances and emerging trends in plant hormone signalling. Nature 459:1071–1078

    Article  PubMed  CAS  Google Scholar 

  • Sasaki Y, Asamizu E, Shibata D, Nakamura Y, Kaneko T, Awai K, Amagai M, Kuwata C, Tsugane T, Masuda T, Shimada H, Takamiya K, Ohta H, Tabata S (2001) Monitoring of methyl jasmonate-responsive genes in Arabidopsis by cDNA macroarray: self-activation of jasmonic acid biosynthesis and crosstalk with other phytohormone signaling pathways. DNA Res 8:153–161

    Article  PubMed  CAS  Google Scholar 

  • Seo M, Nambara E, Choi G, Yamaguchi S (2009) Interaction of light and hormone signals in germinating seeds. Plant Mol Biol 69:463–472

    Article  PubMed  CAS  Google Scholar 

  • Song W-C, Funk CD, Brash AR (1993) Molecular cloning of an allene oxide synthase: a cytochrome P450 specialized for the metabolism of fatty acid hydroperoxides. Proc Natl Acad Sci U S A 90:8519–8523

    Article  PubMed  CAS  Google Scholar 

  • Staswick PE (2008) JAZing up jasmonate signaling. Trends Plant Sci 13:66–71

    Article  PubMed  CAS  Google Scholar 

  • Staswick PE (2009) The tryptophan conjugates of jasmonic and indole-3-acetic acids are endogenous auxin inhibitors. Plant Physiol (Rockville) 150:1310–1321

    Article  CAS  Google Scholar 

  • Staswick PE, Tiryaki I (2004) The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16:2117–2127

    Article  PubMed  CAS  Google Scholar 

  • Staswick PE, Su W, Howell SH (1992) Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proc Natl Acad Sci U S A 89:6837–6840

    Article  PubMed  CAS  Google Scholar 

  • Stelmach BA, Mueller A, Hennig P, Gebhardt S, Schubert-Zsilavecz M, Weiler EW (2001) A novel class of oxylipins, sn1-O-(12-oxophytodienoyl)-sn2-O-(hexadecatrienoyl)-monogalactosyl diglyceride, from Arabidopsis thaliana. J Biol Chem 276:12832–12838

    Article  PubMed  CAS  Google Scholar 

  • Tabata R, Ikezaki M, Fujibe T, Aida M, Tian CE, Ueno Y, Yamamoto KT, Machida Y, Nakamura K, Ishiguro S (2010) Arabidopsis auxin response factor6 and 8 regulate jasmonic acid biosynthesis and floral organ development via repression of class 1 KNOX genes. Plant Cell Physiol 51:164–175

    Article  PubMed  CAS  Google Scholar 

  • Takano M, Kanegae H, Shinomura T, Miyao A, Hirochika H, Furuya W (2001) Isolation and characterization of rice phytochrome A mutants. Plant Cell 13:521–534

    PubMed  CAS  Google Scholar 

  • Takano M, Inagaki N, Xie XZ, Yuzurihara N, Hihara F, Ishizuka T, Yano M, Nishimura M, Miyao A, Hirochika H, Shinomura T (2005) Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. Plant Cell 17:3311–3325

    Article  PubMed  CAS  Google Scholar 

  • Takano M, Inagaki N, Xie XZ, Kiyota S, Baba-Kasai A, Tanabata T, Shinomura T (2009) Phytochromes are the sole photoreceptors for perceiving red/far-red light in rice. Proc Natl Acad Sci U S A 106:14705–14710

    Article  PubMed  CAS  Google Scholar 

  • Tani T, Sobajima H, Okada K, Chujo T, Arimura S, Tsutsumi N, Nishimura M, Seto H, Nojiri H, Yamane H (2008) Identification of the OsOPR7 gene encoding 12-oxophytodienoate reductase involved in the biosynthesis of jasmonic acid in rice. Planta 227:517–526

    Article  PubMed  CAS  Google Scholar 

  • Tao Y, Ferrer JL, Ljung K, Pojer F, Hong F, Long JA, Li L, Moreno JE, Bowman ME, Ivans LJ, Cheng Y, Lim J, Zhao Y, Ballare CL, Sandberg G, Noel JP, Chory J (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133:164–176

    Article  PubMed  CAS  Google Scholar 

  • Terol J, Domingo C, Talon M (2006) The GH3 family in plants: genome wide analysis in rice and evolutionary history based on EST analysis. Gene 371:279–290

    Article  PubMed  CAS  Google Scholar 

  • Theodoulou FL, Job K, Slocombe SP, Footitt S, Holdsworth M, Baker A, Larson TR, Graham IA (2005) Jasmonic acid levels are reduced in COMATOSE ATP-binding cassette transporter mutants. Implications for transport of jasmonate precursors into peroxisomes. Plant Physiol 137:835–840

    Article  PubMed  CAS  Google Scholar 

  • Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCFCO11 complex during jasmonate signalling. Nature (London) 448:661

    Article  CAS  Google Scholar 

  • Tiryaki I, Staswick PE (2002) An Arabidopsis mutant defective in jasmonate response is allelic to the auxin-signaling mutant axr1. Plant Physiol 130:887–894

    Article  PubMed  CAS  Google Scholar 

  • Turner JG, Ellis C, Devoto A (2002) The jasmonate signal pathway. Plant Cell 14:S153–S164

    PubMed  CAS  Google Scholar 

  • Ueda J, Miyamoto K, Aoki M (1994) Jasmonic acid inhibits the Iaa-induced elongation of oat coleoptile segments—a possible mechanism involving the metabolism of cell-wall polysaccharides. Plant Cell Physiol 35:1065–1070

    CAS  Google Scholar 

  • Ueda J, Miyamoto K, Kamisaka S (1995) Inhibition of the synthesis of cell-wall polysaccharides in oat coleoptile segments by jasmonic acid—relevance to its growth-inhibition. J Plant Growth Regul 14:69–76

    Article  CAS  Google Scholar 

  • Wada M, Shimazaki K, Iino M (eds) (2005) Light sensing in plants. Springer, Tokyo

    Google Scholar 

  • Wakuta S, Suzuki E, Saburi W, Matsuura H, Nabeta K, Imai R, Matsui H (2011) OsJAR1 and OsJAR2 are jasmonyl-L-isoleucine synthases involved in wound- and pathogen-induced jasmonic acid signalling. Biochem Biophys Res Commun 409:634–639

    Article  PubMed  CAS  Google Scholar 

  • Wang JG, Chen CH, Chien CT, Hsieh HL (2011) FAR-RED INSENSITIVE219 modulates CONSTITUTIVE PHOTOMORPHOGENIC1 activity via physical interaction to regulate hypocotyl elongation in Arabidopsis. Plant Physiol 156:631–646

    Article  PubMed  CAS  Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697

    Article  PubMed  CAS  Google Scholar 

  • Wasternack C, Kombrink E (2010) Jasmonates: structural requirements for lipid-derived signals active in plant stress responses and development. ACS Chem Biol 5:63–77

    Article  PubMed  CAS  Google Scholar 

  • Wasternack C, Xie D (2010) The genuine ligand of a jasmonic acid receptor: improved analysis of jasmonates is now required. Plant Signal Behav 5:337–340

    Article  PubMed  CAS  Google Scholar 

  • Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280:1091–1094

    Article  PubMed  CAS  Google Scholar 

  • Xie X-Z, Xue Y-J, Zhou J-J, Zhang B, Chang H, Takano M (2011) Phytochromes regulate SA and JA Signaling pathways in rice and are required for developmentally controlled resistance to Magnaporthe grisea. Mol Plant 4:688–696r

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

K.S. was supported by a scholarship from the Landesgraduiertenförderungsgesetz from the state of Baden-Württemberg and from the Studienstiftung des Deutschen Volkes. M.R. obtained funding from the Japanese Society for the Promotion of Science and the Alexander von Humboldt Foundation. Both authors thank Michael Rühle (Karlsruhe Institute of Technology) for the design of Figs. 1 and 2.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Riemann.

Additional information

Handling Editor: Peter Nick

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svyatyna, K., Riemann, M. Light-dependent regulation of the jasmonate pathway. Protoplasma 249 (Suppl 2), 137–145 (2012). https://doi.org/10.1007/s00709-012-0409-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-012-0409-3

Keywords

Navigation