Skip to main content
Log in

Bounds and scaling laws at finite scales in planar elasticity

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Miniaturization and the need for novel materials with unique properties have driven composite materials to the forefront of research in solid mechanics. The response of a composite microstructure is dependent on the properties of individual phases, their distribution, the volume fractions and the scale of observation. The microstructures under investigation are sampled randomly from an infinite two-phase linear elastic planar checkerboard using a binomial distribution. A versatile methodology for investigating the effective response of such microstructures at finite scales is based on the Hill–Mandel macrohomogeneity condition. In this methodology, rigorous bounds are obtained as solutions to stochastic Dirichlet and Neumann boundary value problems from the level of a statistical volume element to that of a representative volume element (RVE). Within the framework of planar elasticity, the concept of a scaling function is introduced which unifies the treatment of several microstructures and quantifies the approach to RVE. It is demonstrated that the scaling function depends on the phase contrast and the mesoscale. Certain exact properties of the scaling function are derived rigorously, and its functional form is established using extensive numerical simulations on 163,728 microstructural realizations at varying contrasts, mesoscale and boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kanit T., Forest S., Galliet I., Monoury V., Jeulin D.: Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int. J. Solids Struct. 40, 3647–3679 (2003)

    Article  MATH  Google Scholar 

  2. Soize C.: Tensor-valued random fields for meso-scale stochastic model of anisotropic elastic microstructure and probabilistic analysis of representative volume element size. Prob. Eng. Mech. 23, 307–323 (2007)

    Article  Google Scholar 

  3. Ranganathan S.I., Ostoja-Starzewski M.: Scaling function, anisotropy and the size of RVE in elastic random polycrystals. J. Mech. Phys. Solids 56, 2773–2791 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ranganathan, S.I., Ostoja-Starzewski, M.: Scale dependent homogenization of inelastic random polycrystals. J. Appl. Mech. 75, 051008-1–051008-9 (2008)

  5. Ranganathan, S.I., Ostoja-Starzewski, M.: Mesoscale conductivity and scaling function in aggregates of cubic, trigonal, hexagonal, and tetragonal symmetries. Phys. Rev. B 77, 214308-1–214308-10 (2008)

    Google Scholar 

  6. Dalaq A.S., Ranganathan S.I., Ostoja-Starzewski M.: Scaling function in conductivity of planar random checkerboards. Comput. Mater. Sci. 72, 252–261 (2013)

    Article  Google Scholar 

  7. Ostoja-Starzewski, M., Ranganathan, S.I.: Scaling and homogenization in spatially random composites. In: Mantic, V. (ed.) Mathematical Methods and Models in Composites. Imperial College Press, London, pp. 61–101 (2013)

  8. Hill R.: Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11, 357–372 (1963)

    Article  MATH  Google Scholar 

  9. Ostoja-Starzewski M.: Material spatial randomness: from statistical to representative volume element. Prob. Eng. Mech. 21, 112–132 (2006)

    Article  Google Scholar 

  10. Jiang M., Alzebdeh K., Jasiuk I.M., Ostoja-Starzewski.: Scale and boundary conditions effects in elastic properties of random composites. Acta Mech. 148, 63–78 (2001)

    Article  MATH  Google Scholar 

  11. Khisaeva Z.F., Ostoja-Starzewski M.: Mesoscale bounds in finite elasticity and thermoelasticity of random composites. Proc. R. Soc. Lond. A 462, 1167–1180 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Khisaeva Z.F., Ostoja-Starzewski M.: on the size of RVE in finite elasticity of random composites. J. Elast. 85, 153–173 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ostoja-Starzewski M.: Scale effects in plasticity of random media: status and challenges. Int. J. Plast. 21, 1119–1160 (2005)

    Article  MATH  Google Scholar 

  14. Ostoja-Starzewski M.: Microstructural randomness versus representative volume element in thermomechanics. J. Appl. Mech. 69, 25–35 (2002)

    Article  MATH  Google Scholar 

  15. Ostoja-Starzewski M.: Towards stochastic continuum thermodynamics. J. Non-Equil. Thermodyn. 27(4), 335–348 (2002)

    Article  MATH  Google Scholar 

  16. Jiang M., Jasiuk I., Ostoja-Starzewski M.: Apparent elastic and elastoplastic behavior of periodic composites. Int. J. Solids Struct. 39, 199–212 (2002)

    Article  MATH  Google Scholar 

  17. Li W., Ostoja-Starzewski M.: Yield of random elasto-plastic materials. J. Mech. Mater. Struct. 1, 1055–1073 (2006)

    Article  Google Scholar 

  18. Jiang M., Ostoja-Starzewski M., Jasiuk I.: Scale-dependent bounds on effective elastoplastic response of random composites. J. Mech. Phys. Solids 49, 655–673 (2001)

    Article  MATH  Google Scholar 

  19. Du X., Ostoja-Starzewski M.: On the scaling from statistical to representative volume element in thermoelasticity of random materials. Netw. Heterog. Media 1, 259–274 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Du X., Ostoja-Starzewski M.: On the size of representative volume element for Darcy law in random media. Proc. R. Soc. Lond. A 462, 2949–2963 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ostoja-Starzewski M.: Microstructural Randomness and Scaling in Mechanics of Materials. Chapman & Hall/CRC/Taylor & Francis, London (2008)

    MATH  Google Scholar 

  22. Forest, S.: Homogenization methods and the mechanics ofgeneralized continua. In: Maugin, G. (ed.) Geometry, Continua and Microstructure. Travaux en Cours No. 60, Hermann, Paris, France, pp. 35–48 (1999)

  23. Pideri C., Seppecher P.: A second gradient material resulting from the homogenization of a heterogeneous linear elastic medium. Contin. Mech. Thermodyn. 9, 241–257 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Alibert J.J., Seppecher P., dell’Isola F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8, 51–73 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Camar-Eddine M., Seppecher P.: Determination of the closure of the set of elasticity functional. Arch. Ration. Mech. Anal. 170, 211–245 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chesnais C., Boutin C., Hans S.: Structural dynamics and generalized continua. Mech. Gen. Cont. Adv. Struct. Mat. 7, 57–76 (2011)

    MathSciNet  Google Scholar 

  27. Thorpe M.F., Jasiuk I.: New results in the theory of elasticity for two-dimensional composites. Proc. R. Soc. Lond. A 438, 531–544 (1992)

    Article  MATH  Google Scholar 

  28. Huet C.: Application of variational concepts to size effects in elastic heterogeneous bodies. J. Mech. Phys. Solids 38, 813–841 (1990)

    Article  MathSciNet  Google Scholar 

  29. Sab K.: On the homogenization and the simulation of random materials. Eur. J. Mech. A/Solids 11, 585–607 (1992)

    MathSciNet  MATH  Google Scholar 

  30. Pecullan S., Gibiansky L.V., Torquato S.: Scale effects on the elastic behavior of periodic and hierarchical two-dimensional composites. J. Mech. Phys. Solids 47, 1509–1542 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Milton G.W.: The Theory of Composites. Cambridge University Press, (2004)

  32. Ranganathan S.I., Ostoja-Starzewski M.: Towards scaling laws in random polycrystals. Int. J. Eng. Sci. (A.J.M. Spencer special issue) 47, 1322–1330 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivakumar I. Ranganathan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raghavan, B.V., Ranganathan, S.I. Bounds and scaling laws at finite scales in planar elasticity. Acta Mech 225, 3007–3022 (2014). https://doi.org/10.1007/s00707-014-1099-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1099-z

Keywords

Navigation