Skip to main content
Log in

Determination of the Closure of the Set of Elasticity Functionals

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We determine the closure for Mosco-convergence in L 2(Ω,ℝ3) of the set of elasticity functionals. We prove that this closure coincides with the set of all non-negative lower-semicontinuous quadratic functionals which are objective, i.e., which vanish for rigid motions. The result is still valid if we consider only the set of isotropic elasticity functionals which have a prescribed Poisson coefficient. This shows that a very large family of materials can be reached when homogenizing a composite material with highly contrasted rigidity coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alibert, J. J., dell’Isola, F., Seppecher, P.: Truss Modular beams the Deformation energy of which depends on higher Displacement gradients. Math. Mech. Solids 8, 51–73 (2003)

    Google Scholar 

  2. Allaire, G.: Shape Optimization by the Homogenization Method. Applied Mathematical Sciences, 146, Springer-Verlag, New York (2002)

  3. Attouch, H.: Variational Convergence for Functions and Operators. Pitman, London (1984)

  4. Avellaneda, M.: Optimal bounds and microgeometries for elastic two-phase composites. SIAM J. Appl. Math. 47, 1216–1228 (1987)

    MathSciNet  MATH  Google Scholar 

  5. Bellieud, M., Bouchitté, G.: Homogenization of elliptic problems in a fiber reinforced structure: Non local effects. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 26, 407–436 (1998)

    MathSciNet  MATH  Google Scholar 

  6. Bellieud, M., Bouchitté, G.: Homogénéisation en présence de fibres de grandes conductivité. C.R. Acad. Sci. Paris Série I 323, 1135–1140 (1996)

    MATH  Google Scholar 

  7. Beurling, A., Deny, J.: Dirichlet spaces. Proc. Nat. Acad. Sci. U.S.A. 45, 208–215 (1959)

    MATH  Google Scholar 

  8. Camar-Eddine, M., Seppecher, P.: Closure of the set of diffusion functionals with respect to the Mosco-convergence. Math. Models Methods Appl. Sci. 12, 1153–1176 (2002)

    MathSciNet  MATH  Google Scholar 

  9. Camar-Eddine, M., Seppecher, P.: Non-local interactions resulting from the homogenization of a linear diffusive medium. C.R. Acad. Sci. Paris Série I 332, 485–490 (2001)

    MATH  Google Scholar 

  10. Camar-Eddine, M.: Closure of the set of diffusion functionals and that of elasticity with respect to Mosco-convergence. Thesis of Toulon University, France. March 2002

  11. Cherkaev, A. V.: Variational Methods for Structural Optimization. Applied Mathematical Sciences, 140. Springer-Verlag, New York (2000)

  12. Dal Maso, G.: An introduction to Γ-convergence. Progress in linear diff. eq. and their app., Birkhäuser, Boston (1993)

  13. De Giorgi, E.: Su un tipo di convergenza variazionale. Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58, 842–850 (1975)

    MATH  Google Scholar 

  14. Fukushima, M.: Dirichlet Forms and Markov Processes. North Holland (1980)

  15. Francfort, G., Murat, F.: Homogenization and Optimal Bounds in Linear Elasticity. Arch. Rat. Mech. Anal. 94, 307–334 (1986)

    MathSciNet  MATH  Google Scholar 

  16. Hashin, Z., Shtrikman, S.: A variational approach to the theory of the elastic behavior of multiphase materials. J. Mech. Phys. Solids 11, 127–140 (1963)

    MATH  Google Scholar 

  17. Jikov, V. V., Kozlov, S. M., Oleinik, O. A.: Homogenization of Differential Operators and Integral Functionals. Springer Verlag, Berlin (1994)

  18. Milton, G. W.: Composite materials with Poisson’s ratios close to -1. J. Mech. Phys. Solids 40, 1105–1137 (1992)

    MathSciNet  MATH  Google Scholar 

  19. Milton, G. W.: The theory of composites. Cambridge University Press, Cambridge, U.K (2002)

  20. Milton, G. W., Cherkaev, A. V.: Which elasticity tensors are realizable?. ASME J. Engin. Mater. Techn. 117, 483–493 (1995)

    Google Scholar 

  21. Milton, G. W., Kohn, R. V.: Variational bounds on the effective moduli of anisotropic composites. J. Mech. Phys. Solids 36, 597–629 (1988)

    MathSciNet  MATH  Google Scholar 

  22. Mosco, U.: Approximation of the solutions of some variational inequalities. Ann. Scuola Normale Sup. Pisa 21, 373–394 (1967)

    MATH  Google Scholar 

  23. Mosco, U.: Composite media and asymptotic Dirichlet forms. J. Funct. Anal. 123, 368–421 (1994)

    MathSciNet  MATH  Google Scholar 

  24. Murat, F.: A strange term brought from somewhere else. Nonlinear differential equations and their applications. Collège de France Seminar, Vol II, pp. 98–138, 389–390, (Paris, 1979/1980), Res. Notes in Math. 60, Pitman, Boston, Mass.-London (1982)

  25. Murat, F., Tartar, L.: Calculus of variations and homogenization. Topics in the mathematical modelling of composite materials. Progr. Nonlinear Differential Equations Appl. 31, Birkhauser Boston, Boston, MA, pp. 139–173 (1997)

  26. Pideri, C., Seppecher, P.: A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Contin. Mech. Thermodyn. 9, 241–257 (1997)

    MathSciNet  MATH  Google Scholar 

  27. Sigmund, O.: Materials with prescribed constitutive parameters: an inverse homogenization problem. Inter. J. Solids and Struct. 31, 2313–2329 (1994)

    MathSciNet  MATH  Google Scholar 

  28. Tartar, L.: Estimations de coefficients homogénéisés: Computing methods in applied sciences and engineering. R. Glowinski, J. L. Lions (eds), Lecture Notes in Math. 704, Springer Verlag, pp. 364–373 (1978)

  29. Tartar, L.: Estimations fines des coefficients homogénéisés. Ennio De Giorgi Colloquium. Edited by P. Krée, Res. Notes in Math. 125, Pitman, London, pp. 168-187 (1985)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Camar-Eddine.

Additional information

Communicated by G. Milton

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camar-Eddine, M., Seppecher, P. Determination of the Closure of the Set of Elasticity Functionals. Arch. Rational Mech. Anal. 170, 211–245 (2003). https://doi.org/10.1007/s00205-003-0272-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-003-0272-7

Keywords

Navigation