Skip to main content
Log in

Single point vibration control for a passive piezoelectric Bernoulli–Euler beam subjected to spatially varying harmonic loads

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Passive vibration control of flexible structures can be achieved by bonding piezoelectric layers with attached electric circuits onto an elastic substrate. In this work, a new concept, denoted as single point control (SPC), is presented in order to cancel harmonic vibrations of slender beams. It is shown by an extended version of the Bernoulli–Euler theory for passive smart beams that the deflection or the slope at a specified location along the beam axis is nullified if the electric circuit is tuned and the shape of the piezoelastic layers are properly shaped. The proposed method holds for harmonic loads only, but the spatial part of the distributed external load may be unknown. A three-dimensional electromechanically coupled FE-analysis with ANSYS confirms these results obtained by the one-dimensional theory. The practical relevance of the derived theory becomes evident if optimal resistive-inductive shunts are used. The robustness of passively controlled systems is strongly increased if the piezoelectric layers are shaped according to the presented SPC-theory instead of using spatially uniformly distributed layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tauchert T.R.: Thermal stresses in plates-statical problems. In: Hetnarski, R.B. (eds) Thermal Stresses I, pp. 23–141. Elsevier, Amsterdam (1986)

    Google Scholar 

  2. Miu D.K.: Mechatronics: Electromechanics and Contromechanics. Springer, New York (1993)

    Google Scholar 

  3. Tzou H.S.: Piezoelectric Shells—Distributed Sensing and Control of Continua. Kluwer, Dordrecht (1993)

    Google Scholar 

  4. Reddy J.N.: A simple higher-order theory for laminated composite plates. J. Appl. Mech. 51, 745–752 (1984)

    Article  MATH  Google Scholar 

  5. Reddy J.N.: On laminated composite plates with integrated sensors and actuators. Eng. Struct. 21, 568–593 (1997)

    Article  Google Scholar 

  6. Zhou Y.G., Chen Y.M., Ding H.J.: Analytical solutions to piezoelectric bimorphs based on improved FSDT beam model. Smart Struct. Syst. 1, 309–324 (2005)

    Google Scholar 

  7. Krommer M., Irschik H.: An electromechanically coupled theory for piezoelastic beams taking into account the charge equation of electrostatics. Acta Mech. 154, 141–158 (2002)

    Article  MATH  Google Scholar 

  8. Krommer M.: On the correction of the Bernoulli–Euler beam theory for smart piezoelectric beams. Smart Mater. Struct. 10, 668–680 (2001)

    Article  Google Scholar 

  9. Krommer M., Irschik H.: A Reissner-Mindlin-type plate theory including the direct piezoelectric and the pyroelectric effect. Acta Mech. 141, 51–69 (2000)

    Article  MATH  Google Scholar 

  10. Krommer M.: On the influence of pyroelectricity upon thermally induced vibrations of piezothermoelastic plates. Acta Mech. 171, 59–73 (2004)

    Article  MATH  Google Scholar 

  11. Benjeddou A., Deü J.F.: A two-dimensional closed-form solution for the free-vibration analysis of piezoelectric sandwich plates. Int. J. Solids Struct. 39, 1463–1486 (2002)

    Article  MATH  Google Scholar 

  12. Heyliger P., Brooks S.: Exact solutions for laminated piezoelectric plates in cylindrical bending. J. Appl. Mech. 63, 903–910 (1996)

    Article  MATH  Google Scholar 

  13. Jin C., Wang X.D., Zuo M.J.: The dynamic behaviour of surface-bonded piezoelectric actuators with debonded adhesive layers. Acta Mech. 211, 215–235 (2010)

    Article  MATH  Google Scholar 

  14. Han L., Wang X.D., Zuo M.: The dynamic behavior of a surface-bonded piezoelectric actuator with a bonding layer. Acta Mech. 206, 193–205 (2009)

    Article  MATH  Google Scholar 

  15. Heuer R., Adam C.: Piezoelectric vibrations of composite beams with interlayer slip. Acta Mech. 140, 247–263 (2000)

    Article  MATH  Google Scholar 

  16. dell’Isola F., Maurini C., Porfiri M.: Passive damping of beam vibrations through distributed electric networks and piezoelectric transducers: prototype design and experimental validation. Smart Mater. Struct. 13, 299–308 (2004)

    Article  Google Scholar 

  17. Trindade, M.A., Maio, C.E.B.: Multimodal passive vibration control of sandwich beams with shunted shear piezoelectric materials. Smart Mater. Struct. 17, 055015 (10pp) (2008)

    Google Scholar 

  18. Caruso G.: A critical analysis of electric shunt circuits employed in piezoelectric passive vibration damping. Smart Mater. Struct. 10, 1059–1068 (2001)

    Article  Google Scholar 

  19. Moheimani S.O.R., Fleming A.J.: Piezoelectric Transducers for Vibration Control and Damping. Springer, New York (2006)

    MATH  Google Scholar 

  20. Wang K.W., Tang J.: Adaptive Structural Systems with Piezoelectric Transducer Circuitry. Springer, New York (2008)

    Google Scholar 

  21. Irschik H., Nader M.: Actuator placement in static bending of smart beams utilizing Mohr’s analogy. Eng. Struct. 31, 1698–1706 (2009)

    Article  Google Scholar 

  22. Irschik H.: A review on static and dynamic shape control of structures by piezoelectric actuation. Eng. Struct. 24, 5–11 (2002)

    Article  Google Scholar 

  23. Irschik H., Krommer M., Pichler U.: Dynamic shape control of beam-type structures by piezoelectric actuation and sensing. Int. J. Appl. Electromagn. Mech. 17, 251–258 (2003)

    Google Scholar 

  24. Irschik H., Krommer M., Belayaev A.K., Schlacher K.: Shaping of piezoelectric sensors/actuators for vibrations of slender beams: coupled theory and inappropriate shape functions. J. Intell. Mater. Syst. Struct. 9, 546–554 (1998)

    Article  Google Scholar 

  25. Nader M., Gattringer H., Krommer M., Irschik H.: Shape control of flexural vibrations of circular plates by shaped piezoelectric actuation. J. Vib. Acoust. 125(1), 88–94 (2003)

    Article  Google Scholar 

  26. Yu Y., Zhang X.N., Lie S.L.: Optimal shape control of a beam using piezoelectric actuators with low control voltage. Smart Mater. Struct. 18, 095006 (2009)

    Article  Google Scholar 

  27. Krommer M.: Dynamic shape control of sub-sections of moderately thick beams. Comput. Struct. 83, 1330–1339 (2005)

    Article  Google Scholar 

  28. Ziegler F.: Computational aspects of structural shape control. J. Sound Vib. 83, 1191–1204 (2005)

    Google Scholar 

  29. Schoeftner, J., Irschik, H.: Passive damping and exact annihilation of vibrations of beams using shaped piezoelectric layers and tuned inductive networks. Smart Mater. Struct. 18, 125008 (9pp) (2009)

    Google Scholar 

  30. Schoeftner, J., Irschik, H.: Piezoelastic structures interacting with electric networks: vibration canceling and shape control, Proceedings of Fifth World Conference on Structural Control and Monitoring (5WCSCM) (published on http://wcscm5.com), Tokyo, Japan (2010)

  31. Schoeftner J., Irschik H.: Passive shape control of force-induced harmonic lateral vibrations for laminated piezoelastic Bernoulli–Euler beams- theory and practical relevance. Smart Struct. Syst. 7, 417–432 (2011)

    Google Scholar 

  32. Huber D., Krommer M.: Accurate modeling of moderately wide beams with attached piezoelectric actuator patches. Mech. Adv. Mater. Struct. 18, 498–510 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juergen Schoeftner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schoeftner, J., Krommer, M. Single point vibration control for a passive piezoelectric Bernoulli–Euler beam subjected to spatially varying harmonic loads. Acta Mech 223, 1983–1998 (2012). https://doi.org/10.1007/s00707-012-0686-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-012-0686-0

Keywords

Navigation