Skip to main content
Log in

The dynamic behavior of a surface-bonded piezoelectric actuator with a bonding layer

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The performance of smart structures depends on the dynamic electromechanical behavior of piezoelectric actuators and the bonding condition along the interface, which connects the actuators and the host structures. This paper provides a theoretical study of the influence of material parameters of the bonding layer on the coupled electromechanical characteristics of piezoelectric actuators, which are subjected to high frequency electric loads. A one-dimensional actuator model with a bonding layer, which undergoes a shear deformation, is proposed. Analytical solutions based on the integral equation method are provided. Detailed numerical simulation is conducted to evaluate the effect of the bonding layer under different loading frequencies. The results indicate that the properties of the bonding layer, the loading frequency, the material combination and the geometry of the actuator have a significant effect on the load transfer between the actuator and the host medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gandhi M.V., Thompson B.S.: Smart Materials and Structures. Chapman Hall, London (1992)

    Google Scholar 

  2. Banks H.T., Smith R.C., Wang Y.: Smart Material Structures: Modelling, Estimation and Control. Masson, John Wiley and Sons, Paris (1996)

    Google Scholar 

  3. Chee C., Tong L., Steven G.P.: A review on the modeling of piezoelectric sensors and actuators incorporated in intelligent structures. J. Intell. Mater. Syst. Struct. 9, 3–19 (1998)

    Article  Google Scholar 

  4. Cohen Y.B.: Emerging NDE technologies and challenges at the beginning of the 3rd millennium-part I. Mater. Eval. 58(1), 17–30 (2000)

    Google Scholar 

  5. Boller C.: Next generation structural health monitoring and its integration into aircraft design. International Journal of Systems Science 31, 1333–1349 (2000)

    Article  MATH  Google Scholar 

  6. Chang, F.K.: Built-in damage diagnostics for composite structures. In: Proceedings of the 10th International Conference on Composite Structures (ICCM-10), vol. 5, pp. 283–289 (1995)

  7. Lin, X., Yuan, F.G.: Pre-stack reverse time migration in structural health monitoring. In: 41st AIAA/ASME/ASCE/AHS/ASc Structures, Structural Dynamics and Materials Conference and Exhibit, Atlanta, 1984–1994 (2000)

  8. Park J.M., Kong J.W., Kim D.S., Yoon D.J.: Nondestructive damage detection and interfacial evaluation of single-fibers/epoxy composites using PZT, PVDF and P(VDF-TrFE) copolymer sensors. Compos. Sci. Technol. 65(2), 241–256 (2005)

    Article  Google Scholar 

  9. Gibbs G.P., Fuller C.R.: Excitation of thin beams using asymmetric piezoelectric actuators. J. Acoust. Soc. Am. 92, 3221–3227 (1992)

    Article  Google Scholar 

  10. Tracy M., Chang F.K.: Identifying impacts in composite plates with piezoelectric strain sensors. Part I. Theory. J. Intell. Mater. Syst. Struct. 9(11), 920–928 (1998)

    Google Scholar 

  11. Lestari W., Qiao P.Z.: Application of wave propagation analysis for damage identification in composite laminated beams. J. Compos. Mater. 39(22), 1967–1984 (2005)

    Article  Google Scholar 

  12. Alleyne D.N., Cawley P.: Optimization of Lamb wave inspection techniques. NDT and E Int. 25(1), 11–22 (1992)

    Article  Google Scholar 

  13. Jin J., Quek S.T., Wang Q.: Wave boundary element to study Lamb wave propagation in plates. J. Sound Vib. 288, 195–213 (2005)

    Article  Google Scholar 

  14. Wang B.L., Mai Y.W.: Fracture of a piezoelectric material layer bonded by two elastic layers. Int. J. Eng. Sci. 40(15), 1697–1727 (2002)

    Article  Google Scholar 

  15. Zhang B., Zhang J.: Electromechanical interaction behaviors of piezoelectric sensor and actuator on elastic substrate. J. Intell. Mater. Syst. Struct. 16(7–8), 589–595 (2005)

    Article  Google Scholar 

  16. Wang X.D.: Coupled electromechanical behavior of piezoelectric actuators in smart structures. J. Intell. Mater. Syst. Struct. 10(3), 232–241 (1999)

    Article  Google Scholar 

  17. Wang X.D., Huang G.L.: Wave propagation in electromechanical structures: induced by surface bonded piezoelectric actuators. J. Intell. Mater. Syst. Struct. 12(2), 105–115 (2001)

    Google Scholar 

  18. Wang X.D., Huang G.L.: Wave propagation generated by piezoelectric actuators attached to elastic substrates. Acta Mech. 183, 155–176 (2006)

    Article  MATH  Google Scholar 

  19. Pietrzakowski M.: Active damping of beams by piezoelectric system: Effects of bonding layer properties. Solids Struct. 38, 7885–7897 (2001)

    Article  MATH  Google Scholar 

  20. Faria A.R.: The impact of finite stiffness bonding on the sensing effectiveness of piezoelectric patches. Smart Mater. Struct. 12, N5–N8 (2003)

    Article  Google Scholar 

  21. Yang J.S., Hu Y.T., Zeng Y., Fan H.: Thickness-shear vibrations of rotated Y-cut quartz plates with imperfectly bonded surface mass layers. IEEE Trans. Ultrasonics Ferroelectr. Freq. Control 53, 241–245 (2006)

    Article  Google Scholar 

  22. Handge U.A.: Analysis of a shear-lag model with nonlinear elastic stress transfer for sequential cracking of polymer coatings. J. Mater. Sci. 37, 4775–4782 (2002)

    Article  Google Scholar 

  23. Wang X.D., Huang G.L.: The coupled dynamic behavior of piezoelectric sensors bonded to elastic media. J. Intell. Mater. Syst. Struct. 17, 883–894 (2006)

    Article  Google Scholar 

  24. Yang J.S.: Equations for the flexural motion of elastic plates with partially electroded piezoelectric actuators. Smart Mater. Struct. 6, 485–490 (1997)

    Article  Google Scholar 

  25. Achenbach J.D.: Wave Propagation in Elastic Solids. North-Holland, Amsterdam (1973)

    MATH  Google Scholar 

  26. Park Y.E.: Crack extension force in a piezoelectric material. ASME J. Appl. Mech. 57, 647–653 (1990)

    Google Scholar 

  27. Park J.M., Kim D.S., Han S.B.: Properties of interfacial adhesion for vibration controllability of composite materials as smart structures. Compos. Sci. Technol. 60, 1953–1963 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. D. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, L., Wang, X.D. & Zuo, M. The dynamic behavior of a surface-bonded piezoelectric actuator with a bonding layer. Acta Mech 206, 193–205 (2009). https://doi.org/10.1007/s00707-008-0098-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-008-0098-3

Keywords

Navigation