Skip to main content
Log in

Nonlinear vibrations of a sandwich piezo-beam system under piezoelectric actuation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The paper describes the use of active structures technology for deformation and nonlinear free vibrations control of a simply supported curved beam with upper and lower surface-bonded piezoelectric layers, when the curvature is a result of the electric field application. Each of the active layers behaves as a single actuator, but simultaneously the whole system may be treated as a piezoelectric composite bender. Controlled application of the voltage across piezoelectric layers leads to elongation of one layer and to shortening of another one, which results in the beam deflection. Both the Euler–Bernoulli and von Karman moderately large deformation theories are the basis for derivation of the nonlinear equations of motion. Approximate analytical solutions are found by using the Lindstedt–Poincaré method which belongs to perturbation techniques. The method makes possible to decompose the governing equations into a pair of differential equations for the static deflection and a set of differential equations for the transversal vibration of the beam. The static response of the system under the electric field is investigated initially. Then, the free vibrations of such deformed sandwich beams are studied to prove that statically pre-stressed beams have higher natural frequencies in regard to the straight ones and that this effect is stronger for the lower eigenfrequencies. The numerical analysis provides also a spectrum of the amplitude-dependent nonlinear frequencies and mode shapes for different geometrical configurations. It is demonstrated that the amplitude–frequency relation, which is of the hardening type for straight beams, may change from hard to soft for deformed beams, as it happens for the symmetric vibration modes. The hardening-type nonlinear behaviour is exhibited for the antisymmetric vibration modes, independently from the system stiffness and dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2 
Fig. 3 
Fig. 4
Fig. 5 
Fig. 6 
Fig. 7 
Fig. 8 
Fig. 9 
Fig. 10 
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of data and material

The datasets supporting the results of this article are included within the article and its additional files.

References

  1. Nayfeh, A.H.: Perturbation methods. Wiley, Weinheim (2008)

    Google Scholar 

  2. Awrejcewicz, J., Krysko, V.A.: Elastic and Thermoelastic Problems in Nonlinear Dynamics of Structural Members. Springer, Berlin (2020). https://doi.org/10.1007/978-3-030-37663-5

    Book  MATH  Google Scholar 

  3. Woinowsky-Krieger, S.: The effect of an axial force on the vibration of hinged bars. J. Appl. Mech. Am. Soc. Mech. Eng. 17, 35–36 (1950). https://doi.org/10.1115/1.4010053

    Article  MathSciNet  MATH  Google Scholar 

  4. Azrar, L., Benamar, R., White, R.G.: Semi-analytical approach to the non-linear dynamic response problem of S-S and C–C beams at large vibration amplitudes Part I: General theory and application to the single mode approach to free and forced vibration analysis. J. Sound Vib. 224(2), 183–207 (1999). https://doi.org/10.1006/jsvi.1998.1893

    Article  Google Scholar 

  5. Hughes, G.C., Bert, C.W.: Effect of gravity on nonlinear oscillations of a horizontal, immovable-end beam. Nonlinear Dyn. 3(5), 365–373 (1992). https://doi.org/10.1007/BF00045072

    Article  Google Scholar 

  6. Sarigül, M.: The effects of elastic supports on nonlinear vibrations of a slightly curved beam. Uludağ Univ. J. Fac. Eng. 23(2), 255–274 (2018). https://doi.org/10.17482/uumfd.315108

    Article  Google Scholar 

  7. Lacarbonara, W., Nayfeh, A.H., Kreider, W.: Experimental validation of reduction methods for nonlinear vibrations of distributed-parameter systems: analysis of a buckled beam. Nonlinear Dyn. 17(2), 95–117 (1998). https://doi.org/10.1023/A:1008389810246

    Article  MATH  Google Scholar 

  8. Ye, S.Q., Mao, X.Y., Ding, H., Ji, J.C., Chen, L.Q.: Nonlinear vibrations of a slightly curved beam with nonlinear boundary conditions. Int. J. Mech. Sci. 168, 105294 (2020). https://doi.org/10.1016/j.ijmecsci.2019.105294

    Article  Google Scholar 

  9. Ding, H., Chen, L.Q.: Nonlinear vibration of a slightly curved beam with quasi-zero-stiffness isolators. Nonlinear Dyn. 95(3), 2367–2382 (2019). https://doi.org/10.1007/s11071-018-4697-9

    Article  MATH  Google Scholar 

  10. Sari, M.E.S., Al-Qaisia, A.: Nonlinear natural frequencies and primary resonance of Euler-Bernoulli beam with initial deflection using nonlocal elasticity theory. Jordan J. Mech. Indust. Eng. 10(3), 161–169 (2016)

    Google Scholar 

  11. Outassafte, O., Adri, A., Rifai, S., Benamar, R.: Geometrically nonlinear free vibration of Euler-Bernoulli shallow arch. J. Phys. Conf. Ser. 1896(1), 012013 (2021). https://doi.org/10.1088/1742-6596/1896/1/012013

    Article  Google Scholar 

  12. Nayfeh, A.H., Kreider, W., Anderson, T.J.: Investigation of natural frequencies and mode shapes of buckled beams. AIAA J. 33(6), 1121–1126 (1995). https://doi.org/10.2514/3.12669

    Article  MATH  Google Scholar 

  13. Awrejcewicz, J., Krysko, A.V., Dobriyan, V., Papkova, I.V., Krysko, V.A.: Chaotic and synchronized dynamics of non-linear Euler-Bernoulli beams. Comput. Struct. 155, 85–96 (2015). https://doi.org/10.1016/j.compstruc.2015.02.022

    Article  Google Scholar 

  14. Awrejcewicz, J., Krysko, A.V., Zhigalov, M.V., Saltykova, O.A., Krysko, V.A.: Chaotic vibrations in flexible multi-layered Bernoulli-Euler and Timoshenko type beams. Latin Am. J. Solids Struct. 5(4), 319–363 (2008)

    Google Scholar 

  15. Krysko, A.V., Awrejcewicz, J., Pavlov, S.P., Bodyagina, K.S., Zhigalov, M.V., Krysko, V.A.: Non-linear dynamics of size-dependent Euler-Bernoulli beams with topologically optimized microstructure and subjected to temperature field. Int. J. Non-Linear Mech. 104, 75–86 (2018). https://doi.org/10.1016/j.ijnonlinmec.2018.05.008

    Article  Google Scholar 

  16. Moheimani, S.R., Fleming, A.J.: Piezoelectric Transducers for Vibration Control And Damping. Springer, Callaghan (2006). ISBN-13: 978-1849965828, ISBN-10: 184996582X

    MATH  Google Scholar 

  17. Jalili, N.: Piezoelectric-Based Vibration Control: From Macro to Micro/Nano Scale Systems. Springer, Boston (2009)

    Google Scholar 

  18. Ballas, R.G.: Piezoelectric Multilayer Beam Bending Actuators: Static and Dynamic Behavior and Aspects Of Sensor Integration. Springer, Darmstadt (2007). Softcover ISBN: 978-3-642-06910-9, eBook ISBN: 978-3-540-32642-7

    Google Scholar 

  19. Dunsch, R., Breguet, J.M.: Unified mechanical approach to piezoelectric bender modeling. Sens. Actuators A 134(2), 436–446 (2007). https://doi.org/10.1016/j.sna.2006.06.033

    Article  Google Scholar 

  20. Thompson, S.P., Loughlan, J.: The active buckling control of some composite column strips using piezoceramic actuators. Compos. Struct. 32(1–4), 59–67 (1995). https://doi.org/10.1016/0263-8223(95)00048-8

    Article  Google Scholar 

  21. Vasques, C.M.A., Rodrigues, J.D.: Active vibration control of smart piezoelectric beams: comparison of classical and optimal feedback control strategies. Comput. Struct. 84(22–23), 1402–1414 (2006). https://doi.org/10.1016/j.compstruc.2006.01.026

    Article  Google Scholar 

  22. Kerboua, M., Megnounif, A., Benguediab, M., Benrahou, K.H., Kaoulala, F.: Vibration control beam using piezoelectric-based smart materials. Compos. Struct. 123, 430–442 (2015). https://doi.org/10.1016/j.compstruct.2014.12.044

    Article  Google Scholar 

  23. Kumar, K.R., Narayanan, S.: Active vibration control of beams with optimal placement of piezoelectric sensor/actuator pairs. Smart Mater. Struct. 17(5), 055008 (2008). https://doi.org/10.1088/0964-1726/17/5/055008

    Article  Google Scholar 

  24. Belouettar, S., Azrar, L., Daya, E.M., Laptev, V., Potier-Ferry, M.: Active control of nonlinear vibration of sandwich piezoelectric beams: A simplified approach. Comput. Struct. 86(3–5), 386–397 (2008). https://doi.org/10.1016/j.compstruc.2007.02.009

    Article  Google Scholar 

  25. Azrar, L., Belouettar, S., Wauer, J.: Nonlinear vibration analysis of actively loaded sandwich piezoelectric beams with geometric imperfections. Comput. Struct. 86(23–24), 2182–2191 (2008). https://doi.org/10.1016/j.compstruc.2008.06.006

    Article  Google Scholar 

  26. Krysko, V.A., Awrejcewicz, J., Kutepov, I.E., Zagniboroda, N.A., Papkova, I.V., Serebryakov, A.V., Krysko, A.V.: Chaotic dynamics of flexible beams with piezoelectric and temperature phenomena. Phys. Lett. A 377(34–36), 2058–2061 (2013). https://doi.org/10.1016/j.physleta.2013.06.040

    Article  MathSciNet  Google Scholar 

  27. Przybylski, J., Kuliński, K.: Stability and free vibration analysis of compound column with piezoelectric rod. Mech. Syst. Signal Process. 148, 107178 (2021). https://doi.org/10.1016/j.ymssp.2020.107178

    Article  Google Scholar 

  28. Przybylski, J.: Stability of an articulated column with two collocated piezoelectric actuators. Eng. Struct. 30(12), 3739–3750 (2008). https://doi.org/10.1016/j.engstruct.2008.07.001

    Article  Google Scholar 

  29. Cornil, M.B., Capolungo, L., Qu, J., Jairazbhoy, V.A.: Free vibration of a beam subjected to large static deflection. J. Sound Vib. 303(3–5), 723–740 (2007). https://doi.org/10.1016/j.jsv.2007.02.016

    Article  Google Scholar 

  30. Treyssede, F.: Vibration analysis of horizontal self-weighted beams and cables with bending stiffness subjected to thermal loads. J. Sound Vib. 329(9), 1536–1552 (2010). https://doi.org/10.1016/j.jsv.2009.11.018

    Article  Google Scholar 

  31. Chang, C.S., Hodges, D.: Vibration characteristics of curved beams. J. Mech. Mater. Struct. 4(4), 675–692 (2009). https://doi.org/10.2140/jomms.2009.4.675

    Article  Google Scholar 

  32. http://www.noliac.com/?id=582 Accessed 25 January 2022

  33. Przybylski, J., Gasiorski, G.: Nonlinear vibrations of elastic beam with piezoelectric actuators. J. Sound Vib. 437, 150–165 (2018). https://doi.org/10.1016/j.jsv.2018.09.005

    Article  Google Scholar 

  34. Preumont, A.: Vibration Control Of Active Structures (Vol 2). Kluwer Academic Publishers, Cham (1997). https://doi.org/10.1007/978-3-319-72296-2

    Book  MATH  Google Scholar 

  35. Foda, M.A.: Influence of shear deformation and rotary inertia on nonlinear free vibration of a beam with pinned ends. Comput. Struct. 71(6), 663–670 (1999). https://doi.org/10.1016/S0045-7949(98)00299-5

    Article  Google Scholar 

  36. Evensen, D.A.: Nonlinear vibrations of beams with various boundary conditions. AIAA J. 6(2), 370–372 (1968). https://doi.org/10.2514/3.4506

    Article  MATH  Google Scholar 

  37. Keller, J.B., Ting, L.: Periodic vibrations of systems governed by nonlinear partial differential equations. Commun. Pure Appl. Math. 19(4), 371–420 (1966). https://doi.org/10.1002/cpa.3160190404

    Article  MathSciNet  MATH  Google Scholar 

  38. Aravamudan, K.S., Murthy, P.N.: Non-linear vibration of beams with time-dependent boundary conditions. Int. J. Non-Linear Mech. 8(3), 195–212 (1973). https://doi.org/10.1016/0020-7462(73)90043-7

    Article  MATH  Google Scholar 

  39. http://www.annon-piezo.com/pzt-materials_l7663_o.html Accessed 25 January 2022

  40. Rao, G.V., Saheb, K.M., Janardhan, G.R.: Concept of coupled displacement field for large amplitude free vibrations of shear flexible beams. J. Vib. Acoust. 128(2), 251–255 (2006). https://doi.org/10.1115/1.2159038

    Article  Google Scholar 

  41. Öz, H.R., Pakdemirli, M., Özkaya, E., Yilmaz, M.: Non-linear vibrations of a slightly curved beam resting on a non-linear elastic foundation. J. Sound Vib. 212(2), 295–309 (1998). https://doi.org/10.1006/jsvi.1997.1428

    Article  Google Scholar 

Download references

Acknowledgements

This article is an extended version of the paper originally presented at 16th International Conference “Dynamical Systems—Theory and Applications”, DSTA 2021, Łódź, Poland.

Funding

The authors declare that no funds, grants, or other support was received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Jacek Przybylski and Krzysztof Kuliński contributed to methodology, investigation and numerical calculations, provided resources, supervised the study, wrote the original draft and was involved in editing.

Corresponding author

Correspondence to Jacek Przybylski.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This chapter does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

Not applicable. The article involves no studies on humans.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Przybylski, J., Kuliński, K. Nonlinear vibrations of a sandwich piezo-beam system under piezoelectric actuation. Nonlinear Dyn 109, 689–706 (2022). https://doi.org/10.1007/s11071-022-07477-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07477-5

Keywords

Navigation