Skip to main content
Log in

The dynamic behaviour of surface-bonded piezoelectric actuators with debonded adhesive layers

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The performance of smart structures depends on the electromechanical behaviour of piezoelectric actuators and the bonding condition along the interface, which connects the actuators and the host structures. This paper provides a theoretical study of the effect of partially debonded adhesive layers on the coupled electromechanical behaviour of piezoelectric actuators subjected to high-frequency electric loads. An actuator model with an imperfect adhesive bonding layer, which undergoes a shear deformation, is proposed to simulate the two-dimensional electromechanical behaviour of the integrated system. An analytical solution of the problem is provided by solving the resulting integral equations in terms of the interfacial stress. Numerical simulation is conducted to study the effect of the bonding layer upon the actuation process. The effect of interfacial debonding on the dynamic response of the layered structure and on the interlaminar strain and stress transfer mechanisms is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gandhi M.V., Thompson B.S.: Smart Materials and Structures. Chapman Hall, London (1992)

    Google Scholar 

  2. Banks H.T., Smith R.C., Wang Y.: Smart Material Structures: Modelling, Estimation and Control. Masson/Wiley, Paris/NY (1996)

    Google Scholar 

  3. Tani J., Takaga T., Qiu J.: Intelligent material systems: application of functional materials. Appl. Mech. Rev. 51, 505–521 (1998)

    Article  Google Scholar 

  4. Boller C.: Next generation structural health monitoring and its integration into aircraft design. Int. J. Syst. Sci. 31, 1333–1349 (2000)

    Article  MATH  Google Scholar 

  5. Denoyer K.K., Kwak M.K.: Dynamic modelling and vibration suppression of a slewing structure utilizing piezoelectric sensors and actuators. J. Sound Vib. 189, 13–31 (1996)

    Article  Google Scholar 

  6. Kwak M.K., Sciulli D.: Fuzzy-logic based vibration suppression control experiments on active structures. J. Sound Vib. 191, 15–28 (1996)

    Article  Google Scholar 

  7. Park J.M., Kim D.S., Han S.B.: Properties of interfacial adhesion for vibration controllability of composite materials as smart structures. Comput. Sci. Tech. 60, 1953–1963 (2000)

    Article  Google Scholar 

  8. Rabinovitch O., Vinson J.R.: Adhesive layer effects in surface-mounted piezoelectric actuators. J. Intell. Mater. Syst. Struct. 13, 689–704 (2002)

    Article  Google Scholar 

  9. Crawley E.F., de Luis J.: Use of piezoelectric actuators as elements of intelligent structures. AIAA J. 25, 1373–1385 (1987)

    Article  Google Scholar 

  10. Crawley E.F., Anderson E.H.: Detailed models of piezoelectric actuation of beams. J. Intell. Mater. Syst. Struct. 1, 4–25 (1990)

    Article  Google Scholar 

  11. Im S., Atluri S.N.: Effects of a piezo-actuator on a finite deformation beam subjected to general loading. AIAA J. 27, 1801–1807 (1989)

    Article  MATH  Google Scholar 

  12. Lin, M.W., Rogers, C.A.: Modeling of the actuation mechanism in a beam structure with induced strain actuators. In: Proceedings of AIAA/ASCE/ASME/ASC 34th Structures, Structural Dynamics and Materials Conference, Part VI, La Jolla, CA, 19–22 April, pp. 3608–3617 (1993)

  13. Lin M.W., Rogers C.A.: Actuation response of a beam structure with induced strain actuators. Adapt. Struct. Mater. Syst. AD 35, 129–139 (1993)

    Google Scholar 

  14. Dimitriadis E.K., Fuller C.R., Rogers C.A.: Piezoelectric actuators for distributed noise and vibration excitation of thin plates. ASME J. Vib. Acoust. 13, 100–107 (1991)

    Article  Google Scholar 

  15. Tzou H.S., Tseng C.I.: Distributed vibration control and identification of coupled elastic/piezoelectric systems. Mech. Syst. Signal Proces. 5, 215–231 (1991)

    Article  Google Scholar 

  16. Wang B.-T., Rogers C.A.: Laminate plate theory for spatially distributed induced strain actuators. J. Comput. Mater. 25, 433–452 (1991)

    Google Scholar 

  17. Tauchert T.R.: Piezothermoelastic behavior of a laminated plate. J. Therm. Stress. 15, 25–37 (1992)

    Article  Google Scholar 

  18. Mindlin R.D.: Forced thickness-shear and flexural vibrations of piezoelectric crystal plates. J. Appl. Phys. 23, 83–88 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mindlin, R.D.: High frequency vibrations of plated, crystal plates. In: Progress in Applied Mechanics, Prager Anniversary Volume, pp. 73–84 (1963)

  20. Tiersten H.F.: Elastic surface waves guided by thin films. J. Appl. Phys. 40, 770–789 (1969)

    Article  Google Scholar 

  21. Mindlin R.D.: High frequency vibrations of piezoelectric crystal plates. Int. J. Solids Struct. 8, 895–906 (1972)

    Article  MATH  Google Scholar 

  22. Mindlin R.D.: Frequencies of piezoelectrically forced vibrations of electroded doubly rotated quartz plates. Int. J. Solids Struct. 20, 141–157 (1984)

    Article  MATH  Google Scholar 

  23. Tiersten H.F.: Electroelastic equations for electroded thin plates subjected to large driving voltages. J. Appl. Phys. 74, 3389–3393 (1993)

    Article  Google Scholar 

  24. Tiersten, H.F.: Equations for the control of the flexural vibrations of composite plates by partially electroded piezoelectric actuators. Active Materials and Smart Structures. In: Anderson, G.L., Lagoudas, D.C. (eds.), SPIE Proceedings Series 2427, pp. 326–342 (1994)

  25. Yang J.S., Batra R.C., Liang X.Q.: The cylindrical bending vibration of a laminated elastic plate due to piezoelectric actuators. Smart Mater. Struct. 3, 485–493 (1994)

    Article  Google Scholar 

  26. Zhou Y.S., Tiersten H.F.: Elastic analysis of laminated composite plates in cylindrical bending due to piezoelectric actuators. Smart Mater. Struct. 3, 255–265 (1994)

    Article  Google Scholar 

  27. Batra R.C., Liang X.Q., Yang J.S.: Shape control of a vibrating simply supported rectangular plate by using piezoelectric actuators. AIAA J. 34, 116–122 (1996)

    Article  MATH  Google Scholar 

  28. Batra R.C., Liang X.Q., Yang J.S.: The vibration of a simply supported rectangular elastic plate due to piezoelectric actuators. Int. J. Solids Struct. 33, 1597–1618 (1996)

    Article  MATH  Google Scholar 

  29. Wang J., Yang J.: Higher-order theories of piezoelectric plates and applications. Appl. Mech. Rev. 53, 87–99 (2000)

    Article  Google Scholar 

  30. Wang X.D., Meguid S.A.: On the electroelastic behaviour of a thin piezoelectric actuator attached to an infinite host structure, Int. J. Solids Struct. 37, 3231–3252 (2000)

    Article  MATH  Google Scholar 

  31. Zhang J.Q., Zhang B.N., Fan J.H.: A coupled electromechanical analysis of a piezoelectric layer bonded to an elastic substrate: Part I. Development of governing equations. Int. J. Solids Struct. 40, 6781–6797 (2003)

    Article  MATH  Google Scholar 

  32. Zhang B.N., Zhang J.Q., Fan J.H.: A coupled electromechanical analysis of a piezoelectric layer bonded to an elastic substrate: Part II. Numerical solution and applications. Int. J. Solids Struct. 40, 6612–6799 (2003)

    Google Scholar 

  33. Choi K.Y., Chang F.K.: Identification of foreign object impact in structures using distributed sensors. J. Intell. Mater. Syst. Struct. 5, 864–869 (1994)

    Article  Google Scholar 

  34. Giurgiutiu V., Rogers C.A.: Modeling of the electro-mechanical (E/M) impedance response of a damaged composite beam. Adapt. Struct. Mater. Syst. 59, 39–46 (1999)

    Google Scholar 

  35. Quinn, P., Palacios, L., Carman, G., Speyer, J.: Health monitoring of structures using directional piezoelectrics. 1999 ASME Mechanics and Materials Conference, Blacksburg, VA, June 27–30 (1999)

  36. Lopes V. Jr., Park, G., Cudney, H., Inman, D.: Smart structures health monitoring using artificial neural network. 2nd International Workshop of Structural Health Monitoring, Stanford University, 8–10 September (1999)

  37. Giurgiutiu V., Zagrai A., Bao J.: Embedded active sensors for in-situ structural health monitoring of thin-wall structures. ASME J. Press. Vess. Technol. 124, 134–145 (2002)

    Google Scholar 

  38. Wang X.D.: Coupled electromechanical behavior of piezoelectric actuators in smart structures. J. Intell. Mater. Syst. Struct. 10, 232–241 (1999)

    Google Scholar 

  39. Wang X.D., Huang G.L.: Wave propagation in electromechanical structures: induced by surface bonded piezoelectric actuators. J. Intell. Mater. Syst. Struct. 12, 105–115 (2001)

    Google Scholar 

  40. Wang X.D., Huang G.L.: Wave propagation generated by piezoelectric actuators attached to elastic substrates. Acta Mech. 183, 155–176 (2006)

    Article  MATH  Google Scholar 

  41. Han, L., Wang, X.D., Zuo, M.: The dynamic behavior of a surface-bonded piezoelectric actuator with a bonding layer. Acta Mech. (2008). doi:10.1007/s00707-008-0098-3

  42. Sun D.C., Tong L., Atluri S.N.: Effects of piezoelectric sensor/sensor debonding on vibration control of smart beams. Int. J. Solids Struct. 38, 9033–9051 (2001)

    Article  MATH  Google Scholar 

  43. Tong L., Sun D.C., Atluri S.N.: Sensing and actuating behaviors of piezoelectric layers with debonding in smart beams. Smart Mater. Struct. 10, 713–723 (2001)

    Article  Google Scholar 

  44. Seeley, C.E., Chattopadhyay, A.: Modeling delaminations in smart composite laminates. In: Proceedings of the 37th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Salt Lake City, UT, 18–19 April, pp. 109–119 (1996)

  45. Kim S.J., Jones J.D.: Effects of piezo-actuator delamination on the performance of active noise and vibration control system. J. Intell. Mater. Syst. Struct. 7, 668–676 (1996)

    Article  Google Scholar 

  46. Tylikowski A.: Effects of piezoactuator delamination on the transfer functions of vibration control systems. Int. J. Solids Struct. 38, 2189–2202 (2001)

    Article  MATH  Google Scholar 

  47. Park Y.E.: Crack extension force in a piezoelectric material. ASME J. Appl. Mech. 57, 647–653 (1990)

    Google Scholar 

  48. Wang X.D., Huang G.L.: The coupled dynamic behaviour of piezoelectric sensors bonded to elastic media. J. Intell. Mater. Syst. Struct. 17, 883–894 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. D. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, C., Wang, X.D. & Zuo, M.J. The dynamic behaviour of surface-bonded piezoelectric actuators with debonded adhesive layers. Acta Mech 211, 215–235 (2010). https://doi.org/10.1007/s00707-009-0231-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-009-0231-y

Keywords

Navigation