Skip to main content
Log in

A colorimetric probe for ascorbic acid based on copper-gold nanoparticles in electrospun nylon

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a colorimetric probe based on copper-gold alloy nanoparticles (NPs). The probe is capable of selectively detecting ascorbic acid (AA) as a result of the distance-dependent colour change of the nanoparticles immobilized in an electrospun nylon-6 nanofiber. The resulting white nanofibres undergo a colour change to blue as a result of the aggregation of the NPs induced by AA in the pH range 2–7. The probe is selective for AA even in the presence of dopamine, uric acid, saccharides, amino acids and certain organic acids. It covers the 1.76 x10−2 mg L−1 to 1.76 x105 mg L−1 concentration range, and exhibits a limit of detection of 1.76 x10−2 mg L−1 based on visual detection. Its application was demonstrated by the determination of ascorbic acid in fruit juices, urine, serum, and vitamin C tablets.

An electrospun colorimetric probe based on the growth of copper-gold alloy nanoparticles induced by ascorbic acid was developed. The white nanofiber turns blue in the pH range 2–7 and is selective for AA in the presence of possible interferences. Its limit of detection is 1.76 x10−2 mg L−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pisoschi AM, Pop A, Negulescu GP, Pisoschi A (2011) Determination of ascorbic acid content of some fruit juices and wine by voltammetry performed at Pt and carbon paste electrodes. Molecules 16:1349–1365

    Article  CAS  Google Scholar 

  2. Okiei W, Ogunlesi M, Azeez L, Obakachi V, Osunsanmi M, Nkenchor G (2009) The voltammetric and titrimetric determination of ascorbic acid levels in tropical fruit samples. Int J Electrochem Sci 4:276–287

    CAS  Google Scholar 

  3. Ambrosi A, Morrin A, Smyth MR, Killard AJ (2008) The application of conducting polymer nanoparticle electrodes to the sensing of ascorbic acid. Anal Chim Acta 6:37–43

    Article  Google Scholar 

  4. Liu Y, Huang J, Hou H, You T (2008) Simultaneous determination of dopamine, ascorbic acid and uric acid with electrospun carbon nanofibers modified electrode. Electrochem Commun 10:1431–1434

    Article  CAS  Google Scholar 

  5. Shi H, Xu Y, Wang Y, Song W (2010) Assembly of ferrocenylhexanethiol functionalized gold nanoparticles for ascorbic acid determination. Microchim Acta 171:81–89

    Article  CAS  Google Scholar 

  6. Fujita Y, Mori I, Yamaguchi T, Hoshino M, Shigemura Y, Shimano M (2001) Spectrophotometric determination of ascorbic acid with iron(III) and p-carboxyphenylfluorone in a cationic surfactant micellar medium. Anal Sci 17:853–857

    Article  CAS  Google Scholar 

  7. Zhu M, Huang X, Li J, Shen H (1997) Peroxidase-based spectrophotometric methods for the determination of ascorbic acid, norepinephrine, epinephrine, dopamine and levodopa. Anal Chim Acta 357:261–267

    Article  CAS  Google Scholar 

  8. Uchiyama S, Kobayashi Y, Suzuki S, Hamamoto O (1991) Selective biocoulometry of vitamin C using dithiothreithol, N-ethylmaleimide, and ascorbate oxidase. Anal Chem 63(20):2259–2262

    Article  CAS  Google Scholar 

  9. Fatibello-Filho O, Vieira IDC (2000) L-Ascorbic Acid Determination in Pharmaceutical Formulations Using a Biosensor Based on Carbon Paste Modified with Crude Extract of Zucchini (Cucurbita pepo). J Braz Chem Soc 11:412–418

    Article  CAS  Google Scholar 

  10. Iwase H (2000) Use of an amino acid in the mobile phase for the determination of ascorbic acid in food by high-performance liquid chromatography with electrochemical detection. J Chromatogr A 881:317–326

    Article  CAS  Google Scholar 

  11. Karlsen A, Blomhoff R, Gundersen TE (2005) High-throughput analysis of Vitamin C in human plasma with the use of HPLC with monolithic column and UV-detection. J Chromatogr B: Analyt Technol Biomed Life Sci 824:132–138

    Article  CAS  Google Scholar 

  12. Wang X, Si Y, Wang J, Ding B, Yu J, Al-Deyab SS (2012) A facile and highly sensitive colorimetric sensor for the detection of formaldehyde based on electro-spinning/netting nano-fiber/nets. Sensor Actuat B: Chemical 163:186–193

    Article  CAS  Google Scholar 

  13. Li Y, Si Y, Wang X, Ding B, Sun G, Zheng G, Luo W, Yu J (2013) Colorimetric sensor strips for lead (II) assay utilizing nanogold probes immobilized polyamide-6/nitrocellulose nano-fibers/nets. Biosens Bioelectron 48:244–250

    Article  CAS  Google Scholar 

  14. Mit-uppatham C, Nithitanakul M, Supaphol P (2004) Effects of solution concentration, emitting electrode polarity, solvent type, and salt addition on electrospun polyamide-6 fibers: A preliminary report. Macromol Symp 216:293–299

    Article  CAS  Google Scholar 

  15. Kalayci V, Ouyang M, Graham K (2006) Polymeric nanofibres in high efficiency filtration applications. Filtration 6:286–293

    CAS  Google Scholar 

  16. Han X-J, Huang Z-M, He C-L, Liu L, Wu Q-S (2008) Coaxial electrospinning of PC(shell)/PU(core) composite nanofibers for textile application. Polym Compos 29:579–584

    Article  Google Scholar 

  17. Yand H, Li H, Shih WH, Ko F Electrospinning of quantum dot nanocomposite fibers. In, 2006. pp 561–571

  18. Kumbar SG, James R, Nukavarapu SP, Laurencin CT (2008) Electrospun nanofiber scaffolds: Engineering soft tissues. Biomed Mater 3 (3)

  19. Liz-Marzán LM (2006) Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22:32–41

    Article  Google Scholar 

  20. Moores A, Goettmann F (2006) The plasmon band in noble metal nanoparticles: An introduction to theory and applications. New J Chem 30:1121–1132

    Article  CAS  Google Scholar 

  21. Ma M, Wang J, Zheng X (2011) Enhancement of the colorimetric sensitivity of gold nanoparticles with triethanolamine to minimize interparticle repulsion. Microchim Acta 172:155–162

    Article  CAS  Google Scholar 

  22. Zhang Y, Li B, Chen X (2010) Simple and sensitive detection of dopamine in the presence of high concentration of ascorbic acid using gold nanoparticles as colorimetric probes. Microchim Acta 168:107–113

    Article  CAS  Google Scholar 

  23. Zhao W, Ali MM, Aguirre SD, Brook MA, Li Y (2008) Paper-Based Bioassays Using Gold Nanoparticle Colorimetric Probes. Anal Chem 80:8431–8437

    Article  CAS  Google Scholar 

  24. Jiang H, Chen Z, Cao H, Huang Y (2012) Peroxidase-like activity of chitosan stabilized silver nanoparticles for visual and colorimetric detection of glucose. Analyst 137:5560–5564

    Article  CAS  Google Scholar 

  25. Xu Q, Du S, Jin G, Li H, Hu XY (2011) Determination of acetamiprid by a colorimetric method based on the aggregation of gold nanoparticles. Microchim Acta 173:323–329

    Article  CAS  Google Scholar 

  26. Shi Q, Vitchuli N, Nowak J, Noar J, Caldwell JM, Breidt F, Bourham M, McCord M, Zhang X (2011) One-step synthesis of silver nanoparticle-filled nylon 6 nanofibers and their antibacterial properties. J Mater Chem 21:10330–10335

    Article  CAS  Google Scholar 

  27. Scampicchio M, Arecchi A, Mannino S (2009) Optical nanoprobes based on gold nanoparticles for sugar sensing. Nanotechnology 20 (13)

  28. Link S, Wang ZL, El-Sayed MA (1999) Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition. J Phys Chem B 103(18):3529–3533

    Article  CAS  Google Scholar 

  29. Mallik K, Mandal M, Pradhan N, Pal T (2001) Seed Mediated Formation of Bimetallic Nanoparticles by UV Irradiation: A Photochemical Approach for the Preparation of “Core-Shell” Type Structures. Nano Letters 1:319–322

    Article  CAS  Google Scholar 

  30. Darroudi M, Ahmad MB, Abdullah AH, Ibrahim NA, Shameli K (2010) Effect of accelerator in green synthesis of silver nanoparticles. International Journal of Molecular Sciences 11:3898–3905

    Article  CAS  Google Scholar 

  31. Pal U, Sanchez Ramirez JF, Liu HB, Medina A, Ascencio JA (2004) Synthesis and structure determination of bimetallic Au/Cu nanoparticles. Appl Phys A: Mater Sci Process 79:79–84

    Article  CAS  Google Scholar 

  32. Zhao W, Brook MA, Li Y (2008) Design of gold nanoparticle-based colorimetric biosensing assays. ChemBioChem 9:2363–2371

    Article  CAS  Google Scholar 

  33. Nadagouda MN, Varma RS (2007) A greener synthesis of core (Fe, Cu)-shell (Au, Pt, Pd, and Ag) nanocrystals using aqueous vitamin C. Cryst Growth Des 7(12):2582–2587

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the MINTEK, DST/NIC. The authors would like to thank the University of Free State (Physics Department) for the XPS analysis and Nelson Mandela Metropolitan University (Physics Department) for SEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boitumelo Mudabuka.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 289 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mudabuka, B., Ondigo, D., Degni, S. et al. A colorimetric probe for ascorbic acid based on copper-gold nanoparticles in electrospun nylon. Microchim Acta 181, 395–401 (2014). https://doi.org/10.1007/s00604-013-1114-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-1114-4

Keywords

Navigation