Skip to main content
Log in

Preconcentration of metal ions using microbacteria

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This review (160 refs). covers the current state of the art of microbacteria-based sorbents for preconcentration of metal ions at trace levels. We highlight advantages and major challenges of the techniques and discuss future perspectives of both batch and column-based methods. Particular attention is paid to the preconcentration of metal ions using resin-immobilized microbacteria for solid phase extractions. We also discuss detection methods including UV–vis spectrophotometry, FAAS, ICP-OES and ICP-MS. Analytical figures of merit are compared, and examples are given for the application to a variety of samples including food, beverages, alloys, water, soil, and geological samples.

An graphical presentation of main experimental steps in solid phase extraction procedure for metal ions together with the summarization of affinity of metal ions to functional groups on the surface of bacteria by considering the classifications according to hard and soft acids and bases theory by Pearson

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AHCANSA:

4-Amino-3-hydroxy-2–(2-chlorobenzene)-azo-1-naphthalene sulfonic acid

CMC:

Critical micelle concentration

CPE:

Cloud point extraction

CPI-MIP-OES:

Continuous powder introduction microwave induced plasma-optical emission spectrometry

DLLME:

Dispersive liquid-liquid microextraction

EDL:

Electrodeless discharge lamp

EPA:

Environmental protection agency

ET-AAS:

Electro thermal atomic absorption spectrometry

FAAS:

Flame atomic absorption spectrometry

GF-AAS:

Graphite furnace atomic absorption spectrometry

HCL:

Hollow cathode lamp

HSAB:

Hard and soft acids and bases

HG-AAS:

Hydride generation atomic absorption spectrometry

ICP-OES:

Inductively coupled plasma optical emission spectrometry

ICP-MS:

Inductively coupled plasma mass spectrometry

LOD:

Limit of detection

LOQ:

Limit of quantification

MWCNT:

Multiwalled carbon nanotubes

UV–VIS:

Ultraviolet visible spectrophotometry

PAN:

1-(2-Pyridylazo)-2-naphthol

PF:

Preconcentration factor

RSD:

Relative standard deviation

SPE:

Solid phase extraction

SPME:

Solid phase microextraction

References

  1. Ozdemir S, Okumuş V, Kilinc E, Bilgetekin H, Dündar A, Ziyadanoğulları B (2012) Pleurotus eryngii immobilized AmberliteXAD-16 as a solid-phase biosorbent for preconcentrations of Cd2+ and Co2+ and their determination by ICP-OES. Talanta 99:502–506

    Article  CAS  Google Scholar 

  2. Zhou W, Zhang Y, Ding X, Liu Y, Shen F, Zhang X, Deng S, Xiao H, Yang G, Peng H (2012) Magnetotactic bacteria: promising biosorbents for heavy metals. Appl Microbiol Biotechnol 95:1097–1104

    Article  CAS  Google Scholar 

  3. Özdemir S, Kilinc E, Poli A, Nicolaus B, Güven K (2012) Cd, Cu, Ni, Mn and Zn resistance and bioaccumulation by thermophilic bacteria, Geobacillus toebii subsp decanicus and Geobacillus thermoleovorans subsp stromboliensis. World J Microbiol Biotechnol 28:155–163

    Article  CAS  Google Scholar 

  4. Kilinc E, Cetin A, Togrul M, Hosgoren H (2008) Synthesis of Bis(amino alcohol)oxalamides and their usage for the preconcentration of trace metals by cloud point extraction. Anal Sci 24:763

    Article  CAS  Google Scholar 

  5. Jameel AB, Tasneem GK, Abdul QS, Mohammad BA, Hassan IA, Ghulam AK, Sumaira K (2009) Optimization of cloud point extraction and solid phase extraction methods for speciation of arsenic in natural water using multivariate technique. Anal Chim Acta 651:57–63

    Article  CAS  Google Scholar 

  6. Yaman M (2005) The improvement of sensitivity in lead and cadmium determinations using flame atomic absorption spectrometry. Anal Biochem 339:1–8

    Article  CAS  Google Scholar 

  7. Afkhami A, Saber-Tehrani M, Bagheri H, Madrakian T (2011) Flame atomic absorption spectrometric determination of trace amounts of Pb(II) and Cr(III) in biological, food and environmental samples after preconcentration by modified nano-alumina. Microchim Acta 172:125–136

    Article  CAS  Google Scholar 

  8. Lian N, Chang X, Zheng H, Wang S, Cui Y, Zhai Y (2005) Application of Dithizone-modified TiO2 nanoparticles in the preconcentration of trace chromium and lead from sample solution and determination by inductively coupled plasma atomic emission spectrometry. Microchim Acta 151:81–88

    Article  CAS  Google Scholar 

  9. Ren Y, Fan Z, Wang J (2007) Speciation analysis of chromium in natural water samples by electrothermal atomic absorbance spectrometry after separation/preconcentration with nanometer-sized zirconium oxide immobilized on silica gel. Microchim Acta 158:227–231

    Article  CAS  Google Scholar 

  10. Tokalıoğlu Ş, Gürbüz F (2010) Selective determination of copper and iron in various food samples by the solid phase extraction. Food Chem 123:183–187

    Article  CAS  Google Scholar 

  11. Ozdes D, Duran C, Bektaş H, Tufekci M, Soylak M (2012) Acetohydrazide derivative for selective separation and preconcentration of Cu(II) ions by coprecipitation method without using a carrier element. Spectrosc Lett 45:330–336

    Article  CAS  Google Scholar 

  12. Ozdemir S, Gul-Guven R, Kilinc E, Dogru M, Erdogan S (2010) Preconcentration of cadmium and nickel using the bioadsorbent Geobacillus thermoleovorans subsp stromboliensis immobilized on Amberlite XAD-4. Microchim Acta 169:79–85

    Article  CAS  Google Scholar 

  13. Kula I, Arslan Y, Bakırdere S, Ataman OY (2008) A novel analytical system involving hydride generation and gold-coated W-coil trapping atomic absorption spectrometry for selenium determination at ng l−1 level. Spectrochim Acta B 63:856–860

    Article  CAS  Google Scholar 

  14. Kilinc E, Bakirdere S, Aydin F, Ataman OY (2012) Sensitive determination of bismuth by flame atomic absorption spectrometry using atom trapping in a slotted quartz tube and revolatilization with organic solvent pulse. Spectrochim Acta B 73:84–88

    Article  CAS  Google Scholar 

  15. Kilinc E, Aydin F (2012) Optimization of continuous flow hydride generation inductively coupled plasma optical emission spectrometry for sensitivity improvement of bismuth. Anal Lett 45:2623–2636

    Article  CAS  Google Scholar 

  16. Ozdemir S, Erdogan S, Kilinc E (2010) Bacillus sp. Immobilized on Amberlite XAD-4 resin as a biosorbent for solid phase extraction of thorium prior to UV–vis spectrometry determination. Microchim Acta 171:275–281

    Article  CAS  Google Scholar 

  17. Ozdemir S, Kilinc E (2012) Geobacillus thermoleovorans immobilized onAmberlite XAD-4 resin as a biosorbent for solid phase extraction of uranium(VI) prior to its spectrophotometric determination. Microchim Acta 178:389–397

    Article  CAS  Google Scholar 

  18. Al-Othman ZA, Habila M, Yilmaz E, Soylak M (2012) Solid phase extraction of Cd(II), Pb(II), Zn(II) and Ni(II) from food samples using multiwalled carbon nanotubes impregnated with 4-(2-thiazolylazo)resorcinol. Microchim Acta 177:397–403

    Article  CAS  Google Scholar 

  19. Faghihian H, Kabiri-Tadi MA (2010) Novel solid-phase extraction method for separation and preconcentration of zirconium. Microchim Acta 168:147–152

    Article  CAS  Google Scholar 

  20. Zhao X, Song N, Jia Q, Zhou W (2009) Determination of Cu, Zn, Mn, and Pb by microcolumn packed with multiwalled carbon nanotubes on-line coupled with flame absorption spectrometry. Microchim Acta 166:329–335

    Article  CAS  Google Scholar 

  21. Liang P, Cao J, Liu R, Liu Y (2007) Determination of trace rare earth elements by inductively coupled plasma optical emission spectrometry after preconcentration with immobilized nanometer titanium dioxide. Microchim Acta 159:35–40

    Article  CAS  Google Scholar 

  22. Liu Y, Guo Y, Meng S, Chang X (2007) Online separation and preconcentration of trace heavy metals with 2,6-dihydroxyphenyl-diazoaminoazobenzene impregnated Amberlite XAD-4. Microchim Acta 158:239–245

    Article  CAS  Google Scholar 

  23. Liu Y, Guo Y, Meng S, Feng F, Chang X (2007) Determination of trace heavy metals in waters by flame atomic absorption pectrometry after preconcentration with 2,4-dinitrophenyldiazoaminoazobenzene on Amberlite XAD-2. Microchim Acta 157:209–214

    Article  CAS  Google Scholar 

  24. Aydemir N, Tokman N, Akarsubasi AT, Baysal A, Akman S (2011) Determination of some trace elements by flame atomic absorption spectrometry after preconcentration and separation by Escherichia coli immobilized on multiwalled carbon nanotubes. Microchim Acta 175:185–191

    Article  CAS  Google Scholar 

  25. Kartal Ş, Ozdemir I, Tokalıoğlu Ş, Yılmaz V (2007) Determination of Cd(II), Co(II), Cu(II), Ni(II), and Pb(II) ions by FAAS after separation/preconcentration using Amberlite XAD-1180 chelating resin chemically modified with o-aminophenol. Sep Sci Technol 42:3199–3215

    Article  CAS  Google Scholar 

  26. Wang Q, Chang X, Hu Z, Li D, Tu Z (2012) Solid-phase extraction and preconcentration of trace Pb(II) from water samples with folic acid modified silica gel. Int J Environ Anal Chem 92:1289–1301

    Article  CAS  Google Scholar 

  27. Jiang Y, Zhang H, He Q, Hu Z, Chang X (2012) Selective solid-phase extraction of trace mercury(II) using a silica gel modified with diethylenetriamine and thiourea. Microchim Acta 178:421–428

    Article  CAS  Google Scholar 

  28. Zih-Perényi K, Lásztity A, Pusztai S (2007) Study of interference of pharmaceuticals with complexing characteristics in solid phase microextraction of lead on chelating celluloses. Microchem J 85:149–156

    Article  CAS  Google Scholar 

  29. Jitaru P, Adams CF (2004) Speciation analysis of mercury by solid-phase microextraction and multicapillary gas chromatography hyphenated to inductively coupled plasma–time-of-flight-mass spectrometry. J Chromatogr A 1055:197–207

    Article  CAS  Google Scholar 

  30. Abranko L, Yang L, Sturgeon RE, Fodor P, Mester Z (2004) Solid phase microextraction for the determination of chromium in sea-water. J Anal At Spectrom 19:1098–1103

    Article  CAS  Google Scholar 

  31. Cui C, He M, Hu B (2011) Membrane solid phase microextraction with alumina hollow fiber on line coupled with ICP-OES for the determination of trace copper, manganese and nickel in environmental water samples. J Hazard Mater 187:379–385

    Article  CAS  Google Scholar 

  32. Rahmi D, Takasaki Y, Zhu Y, Kobayashi H, Konagaya S, Haraguchi H, Umemura T (2010) Preparation of monolithic chelating adsorbent inside a syringe filter tip for solid phase microextraction of trace elements in natural water prior to their determination by ICP-MS. Talanta 81:1438–1445

    Article  CAS  Google Scholar 

  33. Güler N, Maden M, Bakırdere S, Ataman OY, Volkan M (2011) Speciation of selenium in vitamin tablets using spectrofluorometry following cloud point extraction. Food Chem 129:1793–1799

    Article  CAS  Google Scholar 

  34. Ojeda CB, Rojas FS (2009) Separation and preconcentration by a cloud point extraction procedure for determination of metals: an overview. Anal Bioanal Chem 394:759–782

    Article  CAS  Google Scholar 

  35. Ulusoy HI, Gürkan R, Ulusoy S (2012) Cloud point extraction and spectrophotometric determination of mercury species at trace levels in environmental samples. Talanta 88:516–523

    Article  CAS  Google Scholar 

  36. Ulusoy HI, Akcay M, Ulusoy S, Gürkan R (2011) Determination of ultra trace arsenic species in water samples by hydride generation atomic absorption spectrometry after cloud point extraction. Anal Chim Acta 703:137–144

    Article  CAS  Google Scholar 

  37. Wen X, Wu P, Chen L, Hou X (2009) Determination of cadmium in rice and water by tungsten coil electrothermal vaporization-atomic fluorescence spectrometry and tungsten coil electrothermal atomic absorption spectrometry after cloud point extraction. Anal Chim Acta 650:33–38

    Article  CAS  Google Scholar 

  38. Filik H, Yanaz Z, Apak R (2008) Selective determination of total vanadium in water samples by cloud point extraction of its ternary complex. Anal Chim Acta 620:27–33

    Article  CAS  Google Scholar 

  39. Kilinc E, Lepane V, Viitak A, Gumgum B (2009) Off-line determination of trace silver in water samples and standard reference materials by cloud point extraction–atomic absorption spectrometry. P Est Acad Sci 58:190–196

    Article  CAS  Google Scholar 

  40. Silva ES, Correia LO, Santos LO, Vieira EVS, Lemos VA (2012) Dispersive liquid-liquid microextraction for simultaneous determination of cadmium, cobalt, lead and nickel in water samples by inductively coupled plasma optical emission spectrometry. Microchim Acta 178:269–275

    Article  CAS  Google Scholar 

  41. Kocot K, Zawisza B, Sitko R (2012) Dispersive liquid–liquid microextraction using diethyldithiocarbamate as a chelating agent and the dried-spot technique for the determination of Fe, Co, Ni, Cu, Zn, Se and Pb by energy-dispersive X-ray fluorescence spectrometry. Spectrochim Acta B 73:79–83

    Article  CAS  Google Scholar 

  42. Ranjbar L, Yamini Y, Saleh A, Seidi S, Faraji M (2012) Ionic liquid based dispersive liquid-liquid microextraction combined with ICP-OES for the determination of trace quantities of cobalt, copper, manganese, nickel and zinc in environmental water samples. Microchim Acta 177:119–127

    Article  CAS  Google Scholar 

  43. Zeeb M, Sadeghi M (2011) Modified ionic liquid cold-induced aggregation dispersive liquid-liquid microextraction followed by atomic absorption spectrometry for trace determination of zinc in water and food samples. Microchim Acta 175:159–165

    Article  CAS  Google Scholar 

  44. Soylak M, Yilmaz E (2011) Ionic liquid dispersive liquid–liquid microextraction of lead as pyrrolidinedithiocarbamate chelate prior to its flame atomic absorption spectrometric determination. Desalination 275:297–301

    Article  CAS  Google Scholar 

  45. Anthemidis AN, Ioannou KIG (2011) Sequential injection dispersive liquid–liquid microextraction based on fatty alcohols and poly(etheretherketone)-turnings for metal determination by flame atomic absorption spectrometry. Talanta 84:1215–1220

    Article  CAS  Google Scholar 

  46. Mirzaei M, Behzadi M, Abadi NM, Beizaei A (2011) Simultaneous separation/preconcentration of ultra trace heavy metals in industrial wastewaters by dispersive liquid–liquid microextraction based on solidification of floating organic drop prior to determination by graphite furnace atomic absorption spectrometry. J Hazard Mater 186:1739–1743

    Article  CAS  Google Scholar 

  47. Sereshti H, Khojeh V, Samadi S (2011) Optimization of dispersive liquid–liquid microextraction coupled with inductively coupled plasma-optical emission spectrometry with the aid of experimental design for simultaneous determination of heavy metals in natural waters. Talanta 83:885–890

    Article  CAS  Google Scholar 

  48. Ardini F, Magi E, Grotti M (2011) Determination of ultratrace levels of dissolved metals in seawater by reaction cell inductively coupled plasma mass spectrometry after ammonia induced magnesium hydroxide coprecipitation. Anal Chim Acta 706:84–88

    Article  CAS  Google Scholar 

  49. Duran C, Ozdes D, Sahin D, Bulut VN, Gundogdu A, Soylak M (2011) Preconcentration of Cd(II) and Cu(II) ions by coprecipitation without any carrier element in some food and water samples. Microchem J 98:317–322

    Article  CAS  Google Scholar 

  50. Bulut VN, Arslan D, Ozdes D, Soylak M, Tufekci M (2010) Preconcentration, separation and spectrophotometric determination of Aluminium(III) in water samples and dialysis concentrates at trace levels with 8-hydroxyquinoline–cobalt(II) coprecipitation system. J Hazard Mater 182:331–336

    Article  CAS  Google Scholar 

  51. Sacmaci S, Kartal S (2010) Determination of some trace metal ions in various samples by FAAS after separation/preconcentration by copper(II)-BPHA coprecipitation method. Microchim Acta 170:75–82

    Article  CAS  Google Scholar 

  52. Tuzen M, Citak D, Mendil D, Soylak M (2009) Arsenic speciation in natural water samples by coprecipitation-hydride generation atomic absorption spectrometry combination. Talanta 78:52–56

    Article  CAS  Google Scholar 

  53. Ozdes D, Duran C, Bayrak H, Bulut VN, Tufekcı M (2012) Preconcentration by coprecipitation of copper and nickel with Mo(VI)/Triazole derivative system and their determinations by flame atomic absorption spectrometry in food and water samples. Clean–Soil Air Water 40:211–217

    Article  CAS  Google Scholar 

  54. Tokalioglu S, Ayhanoz H (2011) Use of Cu(II) and Fe(III) N-benzoyl-N-phenylhydroxylamine coprecipitants for preconcentration of some trace metal ions in food samples. Food Chem 127:359–363

    Article  CAS  Google Scholar 

  55. Soylak M, Aydin A (2011) Determination of some heavy metals in food and environmental samples by flame atomic absorption spectrometry after coprecipitation. Food Chem Toxicol 49:1242–1248

    Article  CAS  Google Scholar 

  56. Liang P, Zhang L, Zhao E (2010) Displacement-dispersive liquid–liquid microextraction coupled with graphite furnace atomic absorption spectrometry for the selective determination of trace silver in environmental and geological samples. Talanta 82:993–996

    Article  CAS  Google Scholar 

  57. Ince M, Kaya G, Yaman M (2010) Solid phase extraction and preconcentration of cobalt in mineral waters with PAR-loaded Amberlite XAD-7 and flame atomic absorption spectrometry. Environ Chem Lett 8:283–288

    Article  CAS  Google Scholar 

  58. Jiang HM, Yan ZP, Zhao Y, Hu X, Lian HZ (2012) Zincon-immobilized silica-coated magnetic Fe3O4 nanoparticles for solid-phase extraction and determination of trace lead in natural and drinking waters by graphite furnace atomic absorption spectrometry. Talanta 94:251–256

    Article  CAS  Google Scholar 

  59. Bağ H, Türker AR, Lale M (2000) Determination of Cu, Zn, Fe, Ni and Cd by flame atomic absorption spectrophotometry after preconcentration by Escherichia coli immobilized on sepiolite. Talanta 51:1035–1043

    Article  Google Scholar 

  60. Merdivan M, Seyhan S, Gok C (2006) Use of benzoylthiourea immobilized on silica gel for separation and preconcentration of uranium(VI). Microchim Acta 154:109–114

    Article  CAS  Google Scholar 

  61. Hazer O, Kartal S, Tokalioglu S (2009) Atomic absorption spectrometric determination of Cd(II), Mn(II), Ni(II), Pb(II) and Zn(II) ions in water, fertilizer and tea samples after preconcentration on Amberlite XAD-1180 resin loaded with l-(2-Pyridylazo)-2-naphthol. J Anal Chem 64:609–614

    Article  CAS  Google Scholar 

  62. Mahmoud ME, Soayed AA, Hafez OF (2003) Selective solid phase extraction and pre-concentration of heavy metals from seawater by physically and chemically immobilized 4-Amino-3-Hydroxy-2-(2-Chlorobenzene)-Azo-1-naphthalene sulfonic acid silica gel. Microchim Acta 143:65–70

    Article  CAS  Google Scholar 

  63. Das N, Vimala R, Karthika P (1998) Biosorption of heavy metals-an overview. Indian J Biotechnol 7:156–169

    Google Scholar 

  64. Madrid Y, Camara C (1997) Biological substrates for metal preconcentration and speciation. Trends Anal Chem 16:36–44

    Article  CAS  Google Scholar 

  65. Chojnacka K (2010) Biosorption and bioaccumulation–the prospects for practical applications. Environ Int 36:299–307

    Article  CAS  Google Scholar 

  66. Kumar A, Bisht BS, Joshi VD, Dhewa T (2011) Review on bioremediation of polluted environment: a management tool. Int J Environ Sci 1:1079–1093

    Google Scholar 

  67. Zhu X, Venosa AD (2004) Suidan MT literature review on the use of commercial bioremediation agents for cleanup of oil-contaminated estuarine environments, EPA/600/R-04/075, EPA Contract No. 68-C-00-159

  68. Türker AR (2012) Separation, preconcentration and speciation of metal ions by solid phase extraction. Sep Purif Rev 41:169–206

    Article  CAS  Google Scholar 

  69. Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250

    Article  CAS  Google Scholar 

  70. Park D, Yun YS, Park JM (2010) The past, present, and future trends of biosorption. Biotechnol Bioproc Eng 15:86–102

    Article  CAS  Google Scholar 

  71. Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98:2243–2257

    Article  CAS  Google Scholar 

  72. Veglio F, Beolchini F (1997) Removal of metals by biosorption: a review. Hydrometallurgy 44:301–316

    Article  CAS  Google Scholar 

  73. Andrès Y, Texier AC, Cloirec PL (2003) Rare earth elements removal by microbial biosorption: a review. Environ Technol 24:1367–1375

    Article  Google Scholar 

  74. Żyłkiewicz BG (2006) Microorganisms in inorganic chemical analysis. Anal Bioanal Chem 384:114–123

    Article  CAS  Google Scholar 

  75. Aller AJ, Castro MA (2006) Live bacterial cells as analytical tools for speciation analysis: hypothetical or practical. Trends Anal Chem 25:887–898

    Article  CAS  Google Scholar 

  76. Gadd GM (2009) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84:13–28

    Article  CAS  Google Scholar 

  77. Volesky B (2003) Biosorption process simulation tools. Hydrometallurgy 71:179–190

    Article  CAS  Google Scholar 

  78. Ozdemir S, Kilinc E, Poli A, Nicolaus B, Guven K (2009) Biosorption of Cd, Cu, Ni, Mn and Zn from aqueous solutions by thermophilic bacteria, Geobacillus toebii subsp decanicus and Geobacillus thermoleovorans subsp stromboliensis: equilibrium, kinetic and thermodynamic studies. Chem Eng J 152:195–206

    Article  CAS  Google Scholar 

  79. Juwarkar AA, Singh SK, Mudhoo A (2010) A comprehensive overview of elements in bioremediation. Rev Environ Sci Biotechnol 9:215–288

    Article  CAS  Google Scholar 

  80. Tunali N, Ozkar S (1993) Anorganik Kimya Kitabı, Gazi Kitapevi ISBN: 9789758895748

  81. Pearson RG (1962) Hard and soft acids and bases. J Am Chem Soc 84:3533–3539

    Google Scholar 

  82. Gadd GM (1990) Heavy metal accumulation by bacteria and other microorganisms. Experientia 46:834–840

    Article  CAS  Google Scholar 

  83. Sar P, Kazy SK, Singh SP (2001) Intracellular nickel accumulation by Pseudomonas aeruginosa and its chemical nature. Lett Appl Microbiol 32:257–261

    Article  CAS  Google Scholar 

  84. Sauge-Merle S, Cuine S, Carrier P, Lecomte-Pradines C, Luu D-T, Peltier G (2003) Enhanced toxic metal accumulation in engineered bacterial cells expressing Arabidopsis thaliana phytochelatin synthase. Appl Environ Microbiol 69:490–494

    Article  CAS  Google Scholar 

  85. Han R, Li H, Li Y, Zhang J, Xiao H, Shi J (2006) Biosorption of copper and lead ions by waste beer yeast. J Hazard Mater 137:1569–1576

    Article  CAS  Google Scholar 

  86. Ansari MI, Malik A (2007) Biosorption of nickel and cadmium by metal resistant bacterial isolates from agricultural soil irrigated with industrial wastewater. Bioresour Technol 98:3149–3153

    Article  CAS  Google Scholar 

  87. Papageorgiou SK, Kouvelos EP, Katsaros FK (2008) Calcium alginate beads from Laminaria digitata for the removal of Cu+2 and Cd+2 from dilute aqueous metal solutions. Desalination 224:293–306

    Article  CAS  Google Scholar 

  88. Vijayaraghavan K, Yun YS (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291

    Article  CAS  Google Scholar 

  89. http://www.scienceprofonline.com

  90. Aksu Z, Kutsal T (1991) Bioseparation process for removing Lead (II) ions from waste water by using C. vulgaris. J Chem Technol Biotechnol 52:109–118

    Article  CAS  Google Scholar 

  91. Drake LR, Rayson GD (1996) Plant-derived materials for metal ion-selective binding and preconcentration. Anal Chem 1:22–27

    Article  Google Scholar 

  92. Ginisty P, Besnainou B, Sahut C, Guezennec J (1998) Biosorption of cobal by Pseudomonas halodenitrificans: influence of cell wall treatment by alkali and alkali-earth metals and ion-exchange mechanisms. Biotechnol Lett 20:1035–1039

    Article  CAS  Google Scholar 

  93. Breierova E, Vajczikova I, Sasinkova V (2002) Biosorption of cadmium ions by different yeast species. Z Naturforsch C 57:634–639

    CAS  Google Scholar 

  94. Mack C, Wilhelmi B, Duncan JR, Burgess JE (2007) Biosorption of precious metals. Biotechnol Adv 25:264–271

    Article  CAS  Google Scholar 

  95. Volesky B (2007) Biosorption and me. Water Resour 41:4017–4029

    CAS  Google Scholar 

  96. Ozdemir S, Bekler FM, Okumus V, Dundar A, Kilinc E (2012) Biosorption of 2,4-D, 2,4-DP, and 2,4-DB from aqueous solution by using thermophilic Anoxybacillus flavithermus and analysis by high-performance thin layer chromatography: equilibrium and kinetic studies. Environ Prog Sustain 31:544–552

    Article  CAS  Google Scholar 

  97. Gadd GM (1992) Metals and microorganisms: a problem of definition. FEMS Microbiol Lett 100:197–204

    CAS  Google Scholar 

  98. Volesky B (1990) Biosorption of heavy metals. CRC press, Boca Raton

    Google Scholar 

  99. Kapoor A, Viraraghavan T (1995) Fungal biosorption-an alternative treatment option for heavy metal bearing waste waters: a review. Bioresour Technol 53:195–206

    CAS  Google Scholar 

  100. Hetzer A, Daughney CJ, Morgan HW (2006) Cadmium ion biosorption by the thermophilic bacteria Geobacillus stearothermophilus and G. thermocatenulatus. Appl Environ Microbiol 72:4020–4027

    Article  CAS  Google Scholar 

  101. Teitzel GM, Parsek MR (2003) Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl Environ Microbiol 69:2313–2320

    Article  CAS  Google Scholar 

  102. Clarke SE (1987) Induction of siderophore activity in Anabaena species and its moderation of copper toxicity. Appl Environ Microbiol 53:917–922

    CAS  Google Scholar 

  103. Richardson JP, Nicklow JW (2002) In situ permeable reactive barriers for groundwater contamination. Soil Sediment Contam 11:241–268

    Article  CAS  Google Scholar 

  104. Horan NJ (1990) Biological wastewater treatment systems: theory and operation. Wiley, West Sussex, p 1, 41-71

    Google Scholar 

  105. Pablo HP, Raul AG, Soledad EC, Patricia S, Luis DM (2011) Biosorption: a new rise for elemental solid phase extraction methods. Talanta 85:2290–2300

    Article  CAS  Google Scholar 

  106. Robles LC, Garcia-Olalla C, Aller AJ (1993) Determination of gold by slurry electrothermal AAS after preconcentration by Escherichia Coli and Pseudomonas putida. J Anal At Spectrom 8:1015–1022

    Article  Google Scholar 

  107. Robles LC, Aller AJ (1994) Preconcentration of beryllium on outer membrane of Escherichia coli and Pseudomonas putida prior to determination by ETAAS. Anal Atom Spectrom 9:871–879

    Article  CAS  Google Scholar 

  108. Robles LC, Aller AJ (1995) Determination of cadmium in biological and environmental samples by slurry electrothermal atomic absorption spectrometry. Talanta 42:1731–1744

    Article  CAS  Google Scholar 

  109. Gadd GM (1988) Accumulation of metals by microorganisms and algae. In: Rehm HJ, Reeds G (eds) Biotechnology, volume 6b. VCH, Weinheim, pp 425–427

    Google Scholar 

  110. Gupta R, Ahuja P, Khan S, Saxena RK, Mohapatra H (2000) Microbial biosorbents: meeting challenges of heavy metal pollution in aqueous solutions. Curr Sci 78:967–973

    CAS  Google Scholar 

  111. Pilkington PH, Margaritis A, Mensour NA, Russell I (1998) Fundamentals of immobilized yeast cells for continuous beer fermentation: a review. J Inst Brew 104:19–31

    Article  Google Scholar 

  112. Park JK, Chang HN (2000) Microencapsulation of microbial cells. Biotechnol Adv 18:303–331

    Article  CAS  Google Scholar 

  113. Premkumar JR, Rosen R, Belkin S, Lev O (2002) Sol gel luminescence biosensors: encapsulation of recombinant E. coli reporters in think silicate films. Anal Chim Acta 462:11–23

    Article  Google Scholar 

  114. Smidsrod O, Skjak-Braek G (1990) Alginate as immobilization matrix for cells. Trends Biotechnol 8:71–78

    Article  CAS  Google Scholar 

  115. Bai RS, Abraham TE (2003) Studies on chromium(VI) adsorption–desorption using immobilized fungal biomass. Bioresour Technol 87:17–26

    Article  Google Scholar 

  116. Vijayaraghavan K, Han MH, Choi SB, Yun YS (2007) Biosorption of reactive black 5 by Corynebacterium glutamicum biomass immobilized in alginate and polysulfone matrices. Chemosphere 68:1838–1845

    Article  CAS  Google Scholar 

  117. Hu MZC, Reeves M (1997) Biosorption of uranium by Pseudomonas aeruginosa strain CSU immobilized in a novel matrix. Biotechnol Prog 13:60–70

    Article  CAS  Google Scholar 

  118. Baytak S, Türker AR (2005) Determination of Iron(III), Cobalt(II) and Chromium(III) in various water samples by flame atomic absorption spectrometry after preconcentration by means of Saccharomyces carlsbergensis immobilized on Amberlite XAD-4. Microchim Acta 149:109–116

    Article  CAS  Google Scholar 

  119. Lemos VA, Baliza PX (2005) Amberlite XAD-2 functionalized with 2- aminothiophenol as a newsorbent for on-line preconcentration of cadmium and copper. Talanta 67:564–570

    Article  CAS  Google Scholar 

  120. Mendil D, Tuzen M, Soylak M (2008) A biosorption system for metal ions on Penicillium italicum–loaded on Sepabeads SP 70 prior to flame atomic absorption spectrometric determinations. J Hazard Mater 152:1171–1178

    Article  CAS  Google Scholar 

  121. Baytak S, Türker AR (2009) Determination of chromium, cadmium and manganese in water and fish samples after preconcentration using Penicillium digitatum immobilized on pumice stone. Clean 37:314–318

    CAS  Google Scholar 

  122. Baytak S, Koçyiğit A, Türker AR (2007) Determination of lead, iron and nickel in water and vegetable samples after preconcentration with Aspergillus niger loaded on silica gel. Clean 35:607–611

    CAS  Google Scholar 

  123. Bağ H, Lale M, Türker AR (1999) Determination of Cu, Zn and Cd in water by FAAS after preconcentration by baker’s yeast (Saccharomyces cerevisiae) immobilized on sepiolite. Fresenius J Anal Chem 363:224–230

    Article  Google Scholar 

  124. Tuzen M, Uluozlu OD, Usta C, Soylak M (2007) Biosorption of copper(II), lead(II), iron(III) and cobalt(II) on Bacillus sphaericus-loaded Diaion SP-850 resin. Anal Chim Acta 581:241

    Article  CAS  Google Scholar 

  125. Bakircioglu D, Ucar G, Bakircioglu Kurtulus Y (2011) Coliform bacteria immobilized on titanium dioxide nanoparticles as a biosorbent for trace lead preconcentration followed by atomic absorption spectrometric determination. Microchim Acta 174:367–374

    Article  CAS  Google Scholar 

  126. Mendil D, Tuzen M, Usta C, Soylak M (2008) Bacillus thuringiensis var. israelensis immobilized on Chromosorb 101: a new solid phase extractant for preconcentration of heavy metal ions in environmental samples. J Hazard Mater 150:357–363

    Article  CAS  Google Scholar 

  127. Aksu Z (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochem 40:997–1026

    Article  CAS  Google Scholar 

  128. Türker AR, Baytak S (2004) Use of Escherichia coli immobilized on Amberlite XAD-4 asa solid phase extractor for metal preconcentration and determination by atomic absorption spectrometry. Anal Sci 20:329–334

    Article  Google Scholar 

  129. Tuzen M, Soylak M (2008) Biosorption of aluminum on Pseudomonas aeruginosa loaded on Chromosorb 106 prior to its graphite furnace atomic absorption spectrometric determination. J Hazard Mater 154:519–525

    Article  CAS  Google Scholar 

  130. Uluozlu OD, Tuzen M, Mendil D, Soylak M (2010) Determination of As(III) and As(V) species in some natural water and food samples by solid-phase extraction on Streptococcus pyogenes immobilized on Sepabeads SP 70 and hydride generation atomic absorption spectrometry. Food Chem Toxicol 48:1393–1398

    Article  CAS  Google Scholar 

  131. Güven G, Demir M, Başbülbül G (2011) Preconcentration and separation of copper, zinc and lead ions on Geobacillus stearothermophilus DSMZ 22 loaded on silica gel. J Food Agric Environ 9:607–611

    Google Scholar 

  132. Tuzen M, Saygi KÖ, Usta C, Soylak M (2008) Pseudomonas aeruginosa immobilized multiwalled carbon nanotubes as biosorbent for heavy metal ions. Bioresour Technol 99:1563–1570

    Article  CAS  Google Scholar 

  133. Tuzen M, Melek E, Soylak M (2008) Solid-phase extraction of copper, iron and zinc ions on Bacillus thuringiensis israelensis loaded on Dowex optipore V-493. J Hazard Mater 159:335–341

    Article  CAS  Google Scholar 

  134. Duran C, Bulut VN, Gundogdu A, Soylak M, Belduz AO, Beris FS (2009) Biosorption of heavy metals by Anoxybacillus gonensis immobilized on Diaion HP-2MG. Sep Sci Technol 44:335–358

    Article  CAS  Google Scholar 

  135. Tuzen M, Soylak M (2009) Column solid-phase extraction of nickel and silver in environmental samples prior to their flame atomic absorption spectrometric determinations. J Hazard Mater 164:1428–1432

    Article  CAS  Google Scholar 

  136. Doğru M, Gül-Güven R, Erdoğan S (2007) The use of Bacillus subtilis on Amberlite XAD-4 as a new biosorbent in trace metal determination. J Hazard Mater 149:166–173

    Article  CAS  Google Scholar 

  137. Bağ H, Türker AR, Lale M (1999) Determinations of trace metals in geological samples by atomic absorption spectrophotometry after preconcentration by Aspergillus niger immobilized on sepiolite. Anal Sci 15:1251–1256

    Article  Google Scholar 

  138. Baytak S, Türker AR (2005) The use of Agrobacterium tumefacients immobilized on Amberlite XAD-4 as a new biosorbent for the column preconcentration of iron(III), cobalt(II), manganese(II) and chromium(III). Talanta 65:938–945

    Article  CAS  Google Scholar 

  139. Bakirdere S, Aydin F, Bakirdere EG, Titretir S, Akdeniz I, Aydin I, Yildirim E, Arslan Y (2011) From mg/kg to pg/kg levels: a story of trace element determination: a review. Appl Spectrosc Rev 46:38–66

    Article  CAS  Google Scholar 

  140. Yigmatepe E, Yaman M (2011) Determination of molybdenum in biological samples by flame atomic spectrometry after preconcentration on activated carbon. Monatsh Chem 142:131–136

    Article  CAS  Google Scholar 

  141. Senkal BF, Ince M, Yavuz E, Yaman M (2007) The synthesis of new polymeric sorbent and its application in preconcentration of cadmium and lead in water samples. Talanta 72:962–967

    Article  CAS  Google Scholar 

  142. Tokalıoğlu Ş, Kartal Ş (2008) Synthesis and application of a new chelating resin functionalized with salicylaldoxime for the determination of Pb(II), Ni(II), Cu(II) and Mn(II) ions in water samples by flame atomic absorption spectrometry. Microchim Acta 162:87–92

    Article  CAS  Google Scholar 

  143. Tokalıoğlu Ş, Kartal Ş, Elçi L (1997) Determination of some trace elements in high-purity aluminium, zinc and commercial steel by AAS after preconcentration on Amberlite XAD-1180 Resin. Microchim Acta 127:281–286

    Article  Google Scholar 

  144. Baytak S, Türker AR (2004) Flame atomic absorption spectrometric determination of manganese in alloys after preconcentration onto Amberlite XAD-4 loaded with Saccharomyces carlsbergensis. Turk J Chem 28:243–253

    CAS  Google Scholar 

  145. Baytak S, Kendüzler E, Türker AR, Gök N (2008) Penicillium digitatum immobilized on pumice stone as a new solid phase extractor for preconcentration and/or separation of trace metals in environmental samples. J Hazard Mater 153:975–983

    Article  CAS  Google Scholar 

  146. Baytak S, Kendüzler E, Türker AR (2006) Separation/preconcentration of Zn(II), Cu(II), and Cd(II) by Saccharomyces carlsbergensis immobilized on silica gel 60 in various samples. Sep Sci Technol 41:3449–3465

    Article  CAS  Google Scholar 

  147. Bakircioglua Y, Bakircioglu D, Akman S (2010) Biosorption of lead by filamentous fungal biomass-loaded TiO2 nanoparticles. J Hazard Mater 178:1015–1020

    Article  CAS  Google Scholar 

  148. Jorhem L (2000) Determination of metals in foods by atomic absorption spectrometry after dry ashing: NMKL1 collaborative study. J AOAC Int 83:1204–1211

    CAS  Google Scholar 

  149. Takiyama K, Ishii Y (1992) Comparison of digestion methods for atomic absorption analysis of food materials. Anal Sci 8:419–421

    Article  CAS  Google Scholar 

  150. Adeloju SB (1989) Comparison of some wet digestion and dry ashing methods for voltammetric trace element analysis. Analyst 14:455–461

    Article  Google Scholar 

  151. Yaman M, Durak M, Bakirdere S (2005) Comparison of dry, wet, and microwave ashing methods for the determination of Al, Zn, and Fe in yogurt samples by atomic absorption spectrometry. Spectrosc Lett 38:405–417

    Article  CAS  Google Scholar 

  152. Bağ H, Lale M, Türker AR (1998) Determination of iron and nickel by flame atomic absorption spectrophotometry after preconcentration on Saccharomyces cerevisiae immobilized sepiolite. Talanta 47:689–696

    Article  Google Scholar 

  153. Ewing GW (1960) Instrumental methods of chemical analysis, 4th edn. McGraw-Hill Book Company, USA, p 150

    Google Scholar 

  154. Mester Z, Sturgeon R (2003) Comprehensive analytical chemistry: volume XLI sample preparation for trace element analysis. Elsevier B.V, Amsterdam-Netherland, pp 117–127

    Google Scholar 

  155. Ataman OY (2008) Vapor generation and atom traps: atomic absorption spectrometry at the ng/L level. Spectrochim Acta B 63:825–834

    Article  CAS  Google Scholar 

  156. Baytak S, Türker AR (2011) Penicillium digitatum loaded n pumic stone as a solid phase extractor for preconcentration of Co(II), Fe(III) and Ni(II). Curr Anal Chem 7:146–156

    CAS  Google Scholar 

  157. Tyburska A, Jankowski K (2011) Preconcentration of selenium by living bacteria immobilized on silica for microwave induced plasma optical emission spectrometry with continuous powder introduction. Anal Methods 3:659–663

    Article  CAS  Google Scholar 

  158. Manning TJ, Grow WR (1997) Inductively coupled plasma optical emission spectrometry. Chem Educ 2:1430–1471

    Google Scholar 

  159. Boss CB, Fredeen KJ (2004) Consepts, instrumentation and techniques in inductively coupled plasma optical emission spectrometry. Perkin Elmer Inc, USA

    Google Scholar 

  160. Skoog DA, Holler EJ, Niemann TA (1998) Principles of instrumental analysis, 5th edn. Thomsan Learning, US

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sadin Özdemir or Ersin Kılınç.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Özdemir, S., Okumuş, V., Dündar, A. et al. Preconcentration of metal ions using microbacteria. Microchim Acta 180, 719–739 (2013). https://doi.org/10.1007/s00604-013-0991-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-0991-x

Keywords

Navigation