Skip to main content
Log in

The past, present, and future trends of biosorption

  • Reviews
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The discovery and further development of biosorption phenomena provide a basis for a whole new technology aimed at the removal of various pollutants or the recovery of valuable resources from aqueous systems. Today, biosorption is one of the main components of environmental and bioresource technology. Since the status of scientific development of a technology can be reflected through analyses of the literatures pertaining to it, in this review, we qualitatively examine almost all aspects of biosorption research. A range of subjects are covered, including the initial history, raw materials, mechanisms, instrumental tools, process factors, modification and immobilization methods, recovery and regeneration, continuous processes, commercial application, and modeling studies of biosorption. Finally, we summarized the important considerations of the current research on biosorption, as well as the suggestions for its future directions. We believe that this review will prove to be useful for scientists and engineers in the performance of their research into biosorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krishnani, K. K. and S. Ayyappan (2006) Heavy metals remediation of water using plants and lignocellulosic agrowastes. Rev. Environ. Contam. Toxicol. 188: 59–84.

    Article  CAS  Google Scholar 

  2. Vijayaraghavan, K. and Y. -S. Yun (2008) Bacterial biosorbents and biosorption. Biotechnol. Adv. 26: 266–291.

    Article  CAS  Google Scholar 

  3. Hai, F. I., K. Yamamoto, and K. Fukushi (2007) Hybrid treatment systems for dye wastewater. Crit. Rev. Environ. Sci. Technol. 37: 315–377.

    Article  CAS  Google Scholar 

  4. Crini, G. (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog. Polym. Sci. 30: 38–70.

    Article  CAS  Google Scholar 

  5. Crini, G. (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour. Technol. 97: 1061–1085.

    Article  CAS  Google Scholar 

  6. Vieira, R. H. S. F. and B. Volesky (2000) Biosorption: a solution to pollution? Int. Microbiol. 3: 17–24.

    CAS  Google Scholar 

  7. Volesky, B. (2007) Biosorption and me. Water Res. 41: 4017–4029.

    Article  CAS  Google Scholar 

  8. Ahmaruzzaman, Md. (2008) Adsorption of phenolic compounds on low-cost adsorbents: a review. Adv. Colloid Interf. Sci. 143: 48–67.

    Article  CAS  Google Scholar 

  9. Babel, S. and T. A. Kurniawan (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J. Hazard. Mater. 97: 219–243.

    Article  CAS  Google Scholar 

  10. Bailey, S. E., T. J. Olin, R. M. Bricka, and D. D. Adrian (1999) A review of potentially low-cost sorbents for heavy metals. Water Res. 33: 2469–2479.

    Article  CAS  Google Scholar 

  11. Bhatnagar, A. and A. K. Minocha (2006) Conventional and non-conventional adsorbents for removal of pollutants from water — a review. Indian J. Chem. Technol. 13: 203–217.

    CAS  Google Scholar 

  12. Kurniawan, T. A., G. Y. S. Chan, W.-H. Lo, and S. Bebel (2006) Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals. Sci. Total Environ. 366: 409–426.

    Article  CAS  Google Scholar 

  13. Lin, S.-H. and R.-S. Juang (2009) Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: a review. J. Environ. Manage. 90: 1336–1349.

    Article  CAS  Google Scholar 

  14. Mohan, D. and C. U. Pittman, Jr. (2006) Activated carbon and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J. Hazard. Mater. 137: 762–811.

    Article  CAS  Google Scholar 

  15. Mohan, D. and C. U. Pittman, Jr. (2007) Arsenic removal from water/wastewater using adsorbents-a critical review. J. Hazard. Mater. 142: 1–53.

    Article  CAS  Google Scholar 

  16. Aksu, Z. (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochem. 40: 997–1026.

    Article  CAS  Google Scholar 

  17. Sağ, Y. and T. Kutsal (2001) Recent trends in the biosorption of heavy metals: a review. Biotechnol. Bioprocess Eng. 6: 376–385.

    Article  Google Scholar 

  18. McCallan, S. E. A. and L. P. Miller (1956) Innate toxicity of fungicides. pp. 107–134. In: R. L. Metcalf (ed.). Advanced in Pest Control Research: Vol. II. Interscience, NY, USA.

    Google Scholar 

  19. Muraleedharan, T. R., L. Iyengar, and C. Venkobachar (1991) Biosorption: an attractive alternative for metal removal and recovery. Curr. Sci. 61: 379–385.

    CAS  Google Scholar 

  20. John Wase, D. A. and C. F. Forster (1997) Biosorbents for metal ions. CRC Press, Florida, USA.

    Google Scholar 

  21. Volesky, B. (1990) Biosorption of heavy metals. CRC Press, Florida, USA.

    Google Scholar 

  22. Volesky, B. (2004) Sorption and biosorption. BV-Sorbex Inc., Quebec, Canada.

    Google Scholar 

  23. Modak, J. M. and K. A. Natarajan (1995) Biosorption of metals using nonliving biomass-a review. Miner. Metall. Proc. 12: 189–196.

    CAS  Google Scholar 

  24. Ullrich, A. H. and M.W. Smith (1951) The biosorption process of sewage and waste treatment. Sewage Ind. Wastes 23: 1248–1253.

    CAS  Google Scholar 

  25. Stasiak, M. (1969) Application of biosorption process for renovation of waste waters at chemical industry, Przemysl Chemiczny 48: 426–428.

    CAS  Google Scholar 

  26. Ames Crosta Mills & Company Ltd. and J. R. Sanderson (1973) Apparatus for the biological treatment of waste water by the biosorption process. Great Britain Patent GB1324358.

  27. Ruchoft, C. C. (1949) The possibilities of disposal of radio active wastes by biological treatment methods. Sewage Works J. 21: 877–883.

    Google Scholar 

  28. Volesky, B. and M. Tsezos (1982) Separation of uranium by biosorption. US Patent US04320093.

  29. Goodman, G. T. and T. M. Roberts (1971) Plants and soils as indicators of metals in the air. Nature 231: 287–292.

    Article  CAS  Google Scholar 

  30. Neufeld, R. D. and E. R. Hermann (1975) Heavy metal removal by acclimated activated sludge. J. Water Pollut. Control Fed. 47: 310–329.

    CAS  Google Scholar 

  31. Friedman, B. A. and P. R. Dugan (1968) Concentration and accumulation of metallic ions by the bacterium Zoogloea. Dev. Ind. Microbiol. 9: 381–388.

    Google Scholar 

  32. Nakajima, A., T. Horikoshi, and T. Sakaguchi (1982) Studies on the accumulation of heavy metal elements in biological systems. J. Appl. Microbiol. 16: 88–91.

    Article  CAS  Google Scholar 

  33. Sakaguchi, T., A. Nakajima, and T. Horikoshi (1978) Studies on the accumulation of heavy metal elements in biological systems: VI. Uptake of uranium from sea water by microalgae. J. Ferment. Technol. 56: 561–565.

    CAS  Google Scholar 

  34. Gould, M. S. and E. J. Genetelli (1984) Effects of competition on heavy metal binding by anaerobically digested sludges. Water Res. 18: 123–126.

    Article  CAS  Google Scholar 

  35. Chiu, Y., M. Asce, and J. E. Zajic (1976) Biosorption isotherm for uranium recovery. J. Environ. Eng. ASCE 102: 1109–1111.

    CAS  Google Scholar 

  36. Tsezos, M. and B. Volesky (1981) Biosorption of uranium and thorium. Biotechnol. Bioeng. 23: 583–604.

    Article  CAS  Google Scholar 

  37. Steen, W. C. and S. W. Karickhoff (1981) Biosorption of hydrophobic organic pollutants by mixed microbial populations. Chemosphere 10: 27–32.

    Article  CAS  Google Scholar 

  38. Tsezos, M. (2001) Biosorption of metals: the experience accumulated and the outlook for technology development. Hydrometallurgy 59: 241–243.

    Article  CAS  Google Scholar 

  39. Gadd, G. M. (1990) Heavy metal accumulation by bacteria and other microorganisms. Experientia 46: 834–840.

    Article  CAS  Google Scholar 

  40. Malik, A. (2004) Metal bioremediation through growing cells. Environ. Int. 30: 261–278.

    Article  CAS  Google Scholar 

  41. Kratochvil, D. and B. Volesky (1998) Advances in the biosorption of heavy metals. Trends Biotechnol. 16: 291–300.

    Article  CAS  Google Scholar 

  42. Volesky, B. (1994) Advances in biosorption of metals: selection of biomass types. FEMS Microbiol. Rev. 14: 291–302.

    Article  CAS  Google Scholar 

  43. Volesky, B. and Z. R. Holan (1995) Biosorption of heavy metals. Biotechnol. Progr. 11: 235–250.

    Article  CAS  Google Scholar 

  44. Ahluwalia, S. S. and D. Goyal (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour. Technol. 98: 2243–2257.

    Article  CAS  Google Scholar 

  45. Bishnoi, N. R. and A. Garima (2005) Fungus-an alternative for bioremediation of heavy metal containing wastewater: a review. J. Sci. Ind. Res. 64: 93–100.

    CAS  Google Scholar 

  46. Gupta, R. and H. Mohapatra (2003) Microbial biomass: an economical alternative for removal of heavy metals from waste water. Indian J. Exp. Biol. 41: 945–966.

    CAS  Google Scholar 

  47. Kaushik, P. and A. Malik (2009) Fungal dye decolourization: recent advances and future potential. Environ. Int. 35: 127–141.

    Article  CAS  Google Scholar 

  48. Lodeiro, P., R. Herrero, and M. E. Sastre de Vicente (2006) Thermodynamic and kinetic aspects on the biosorption of cadmium by low cost materials: a review. Environ. Chem. 3: 400–418.

    Article  CAS  Google Scholar 

  49. Mack, C., B. Wilhelmi, J. R. Duncan, and J. E. Burgess (2007) Biosorption of precious metals. Biotechnol. Adv. 25: 264–271.

    Article  CAS  Google Scholar 

  50. McHale, A. P. and S. McHale (1994) Microbial biosorption of metals: potential in the treatment of metal pollution. Biotechnol. Adv. 12: 647–652.

    Article  CAS  Google Scholar 

  51. Mehta, S. K. and J. P. Gaur (2005) Use of algae for removing heavy metals ions from wastewater: progress and prospects. Crit. Rev. Biotechnol. 25: 113–152.

    Article  CAS  Google Scholar 

  52. Sağ, Y. (2001) Biosorption of heavy metals by fungal biomass and modeling of fungal biosorption: a review. Separ. Purif. Method 30: 1–48.

    Article  Google Scholar 

  53. Veglio, F. and F. Beolchini (1997) Removal of metals by biosorption: a review. Hydrometallurgy 44: 301–316.

    Article  CAS  Google Scholar 

  54. Wan Ngah, W. S. and M. A. K. M. Hanafiah (2008) Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresource Technol. 99: 3935–3948.

    Article  CAS  Google Scholar 

  55. Wilde, E. W. and J. R. Benemann (1993) Bioremoval of heavy metals by the use of microalgae. Biotechnol. Adv. 11: 781–812.

    Article  CAS  Google Scholar 

  56. Romera, E., F. González, A. Ballester, M. L. Blázquez, and J. A. Muñoz (2006) Biosorption with algae: a statistical review. Cri. Rev. Biotechnol. 26: 223–235.

    Article  CAS  Google Scholar 

  57. Varma, A. J., S. V. Deshpande, and J. F. Kennedy (2004) Metal complexation by chitosan and its derivatives: a review. Carbohyd. Polym. 55: 77–93.

    Article  CAS  Google Scholar 

  58. Gerente, C., V. K. C. Lee, P. Le Cloirec, and G. MaKay (2007) Application of chitosan for the removal of metals from wastewaters by adsorption — mechanisms and models review. Crit. Rev. Environ. Sci. Technol. 37: 41–127.

    Article  CAS  Google Scholar 

  59. Demirbas, A. (2008) Heavy metal adsorption onto agro-based waste materials: a review. J. Hazard. Mater. 157: 220–229.

    Article  CAS  Google Scholar 

  60. Johnson, T. A., N. Jain, H. C. Joshi, and S. Prasad (2008) Agricultural and agro-processing wastes as low cost adsorbents for metal removal from wastewater: a review. J. Sci. Ind. Res. 67: 647–658.

    CAS  Google Scholar 

  61. Mahvi, A. H. (2008) Application of agricultural fibers in pollution removal from aqueous solution, Int. J. Environ. Sci. Tech. 5: 275–285.

    CAS  Google Scholar 

  62. Sud, D., G. Mahajan, and M. P. Kaur (2008) Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions-a review. Bioresour. Technol. 99: 6017–6027.

    Article  CAS  Google Scholar 

  63. Swami, D. and D. Buddhi (2006) Removal of contaminants from industrial wastewater through various non-conventional technologies: a review. Int. J. Environ. Pollut. 27: 324–346.

    CAS  Google Scholar 

  64. O’Connell, D. W., C. Birkinshaw, and T. F. O’Dwyer (2008) Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresour. Technol. 99: 6709–6724.

    Article  CAS  Google Scholar 

  65. McKay, G., Y. S. Ho, and J. C. Y. Ng (1999) Biosorption of copper from waste waters: a review. Separ. Purif. Method 28: 87–125.

    Article  CAS  Google Scholar 

  66. Popa, K. and A. Cecal (2003) A review on biosorption of uranyl ions. Environ. Eng. Manage. J. 2: 69–75.

    CAS  Google Scholar 

  67. Andrès, Y., A. C. Texier, and P. Le Cloirec (2003) Rare earth elements removal by microbial biosorption: a review. Environ. Technol. 24: 1367–1375.

    Article  Google Scholar 

  68. Wang, J. and C. Chen (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol. Adv. 24: 427–451.

    Article  CAS  Google Scholar 

  69. Pal, A. and A. K. Paul (2008) Microbial extracellular polymeric substances: central elements in heavy metal bioremediation. Indian J. Microbiol. 48: 49–64.

    Article  CAS  Google Scholar 

  70. Gupta, R., P. Ahuja, S. Khan, R. K. Saxena, and H. Mohapatra (2000) Microbial biosorbents: meeting challenges of heavy metal pollution in aqueous solutions. Curr. Sci. 78: 967–973.

    CAS  Google Scholar 

  71. Crini, G. and P.-M. Badot (2008) Application of chitosan, a natural aminopolysaccharide, for dye removal by aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog. Polym. Sci. 33: 399–447.

    Article  CAS  Google Scholar 

  72. Chandana Lakshmi, M. V. V., V. Sridevl, and S. K. Beebl (2007) A review on biosorption of heavy metals from industrial effluents. Indian J. Environ. Prot. 27: 545–553.

    Google Scholar 

  73. Ioannidou, O. and A. Zabaniotou (2007) Agricultural residues as precursors for activated carbon production-a review. Renew. Sust. Energ. Rev. 11: 1966–2005.

    Article  CAS  Google Scholar 

  74. Suhas, P., J. M. Carrott, and M. M. L. Ribeiro Carrott (2007) Lignin — from natural adsorbent to activated carbon: a review. Bioresour. Technol. 98: 2301–2312.

    Article  CAS  Google Scholar 

  75. Gadd, G. M. and C. White (1993) Microbial treatment of metal pollution — a working biotechnology? Trends Biotechnol. 11: 353–359.

    Article  CAS  Google Scholar 

  76. Kapoor, A. and T. Viraraghavan (1995) Fungal biosorption — an alternative treatment option for heavy metal bearing wastewaters: a review. Bioresour. Technol. 53: 195–206.

    Article  CAS  Google Scholar 

  77. Atkinson, B. W., F. Bux, and H. C. Kasan (1998) Considerations for application of biosorption technology to remediate metal-contaminated industrial effluents. Water SA 24: 129–135.

    CAS  Google Scholar 

  78. Gavrilescu, M. (2004) Removal of heavy metals from the environment by biosorption. Eng. Life Sci. 4: 219–232.

    Article  CAS  Google Scholar 

  79. Volesky, B. (1987) Biosorbents for metal recovery. Trends Biotechnol. 5: 96–101.

    Article  CAS  Google Scholar 

  80. Zouboulis, A. I., N. K. Lazaridis, and K. A. Matis (2008) The process of flotation: an efficient solid/liquid separation technique for biological materials. Int. J. Environ. Pollut. 32: 29–42.

    Article  CAS  Google Scholar 

  81. Zouboulis, A. I. and K. A. Matis (1997) Removal of metal ions from dilute solutions by sorptive flotation. Crit. Rev. Environ. Sci. Technol. 27: 195–235.

    Article  CAS  Google Scholar 

  82. Li, H., Z. Li, T. Liu, X. Xiao, Z. Peng, and L. Deng (2008) A novel technology for biosorption and recovery hexavalent chromium in wastewater by bio-functional magnetic beads. Bioresour. Technol. 99: 6271–6279.

    Article  CAS  Google Scholar 

  83. Binupriya, A. R., M. Sathishkumar, D. Kavitha, K. Swaminathan, and S. E. Yun (2007) Aerated and rotated mode of decolorization of a textile dye solution by native and modified mycelial biomass of Trametes versiocolor. J. Chem. Technol. Biotechnol. 82: 350–359.

    Article  CAS  Google Scholar 

  84. Kuyucak, N. and B. Volesky (1989) Desorption of cadmium from algal biosorbent. Biotechnol. Bioeng. 33: 815–822.

    Article  CAS  Google Scholar 

  85. Ho, Y.-S. (2006) Review of second-order models for adsorption systems. J. Hazard. Mater. 136: 681–689.

    Article  CAS  Google Scholar 

  86. Liu, Y. and Y.-J. Liu (2008) Biosorption isotherms, kinetics, and thermodynamics. Sep. Purif. Technol. 61: 229–242.

    Article  CAS  Google Scholar 

  87. Volesky, B. (2003) Biosorption process simulation tools. Hydrometallurgy 71: 179–190.

    Article  CAS  Google Scholar 

  88. Langmuir, I. (1918) The adsorption of gases on plane surfaces of glass, mica, and platinum. J. Am. Chem. Soc. 40: 1361–1403.

    Article  CAS  Google Scholar 

  89. Freundlich, H. (1907) Ueber die adsorption in Loesungen. Z. Phy. Chem. 57: 385–470.

    CAS  Google Scholar 

  90. Temkin, D. (1934) Die gas adsorption under nernstsche wärmesatz. Acta. Physicochima URSS 1: 36–52.

    CAS  Google Scholar 

  91. Dubinin, M. M. (1960) The potential theory of adsorption of gases and vapors for adsorbents with energeticcally non-uniform surface. Chem. Rev. 60: 235–266.

    Article  CAS  Google Scholar 

  92. Sips, R. (1948) On the structure of a catalyst surface. J. Chem. Phys. 16: 490–495.

    Article  CAS  Google Scholar 

  93. Redlich, O. and D. L. Peterson (1959) A useful adsorption isotherm. J. Phys. Chem. 63: 1024–1024.

    Article  CAS  Google Scholar 

  94. Radke, C. J. and J. M. Prausnitz (1972) Adsorption of organic solutions from dilute aqueous solution on activated carbon. Ind. Eng. Chem. Fund. 11: 445–451.

    Article  CAS  Google Scholar 

  95. Khan, A. R., A. Ataullah, and A. Al-Haddad (1997) Equilibrium adsorption studies of some aromatic pollutants from dilute aqueous solutions on activated carbon at different temperatures. J. Colloid Interf. Sci. 194: 154–165.

    Article  CAS  Google Scholar 

  96. Toth, J. (1971) State equations of the solid gas interface layer. Acta Chim. Acad. Sci. Hung. 69: 311–328.

    CAS  Google Scholar 

  97. Brunauer, S., P. H. Emmett, and E. Teller (1938) Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60: 309–319.

    Article  CAS  Google Scholar 

  98. Liu, Y. (2006) Some consideration on the Langmuir isotherm equation. Colloid Surf. A.: Physicochem. Eng. Aspects 274: 34–36.

    Article  CAS  Google Scholar 

  99. Lu, X. (2008) Comment on “Thermodynamic and isotherm studies of the biosorption of Cu(II), Pb(II), and Zn(II) by leaves of saltbush (Atriplex canescens)”. J. Chem. Thermodyn. 40: 739–740.

    Article  CAS  Google Scholar 

  100. Weber, W. J. and J. C. Morris (1963) Kinetics of adsorption on carbon solution. J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 89: 31–59.

    Google Scholar 

  101. Lagergren, S. (1898) Zur theorie der sogenannten adsorption gelöster stoffe. K. Sven. Vetenskapsakad. Handl. 224: 1–39.

    Google Scholar 

  102. Zeldowitsch, J. (1934) Über den mechanismus der katalytischen oxidation von CO an MnO2. Acta Physicochim. URSS 1: 364–449.

    Google Scholar 

  103. Liu, Y. and L. Shen (2008) A general rate law equation for biosorption. Biochem. Eng. J. 38: 390–394.

    Article  CAS  Google Scholar 

  104. Sağ, Y., A. Yalçuk, and T. Kutsal (2000) Mono and multi-component biosorption of heavy metal ions on Rhizopus arrhizus in a CFST. Process Biochem. 335: 787–799.

    Article  Google Scholar 

  105. Bohart, G. and E. Q. Adams (1920) Some aspects of the behavior of charcoal with respect to chlorine. J. Am. Chem. Soc. 42: 523–544.

    Article  CAS  Google Scholar 

  106. Thomas, H. C. (1944) Heterogeneous ion exchange in a flowing system. J. Am. Chem. Soc. 66, 1664–1666.

    Article  CAS  Google Scholar 

  107. Wolborska, A. (1989) Adsorption on activated carbon of p-nitrophenol from aqueous solution. Water Res. 23: 85–91.

    Article  CAS  Google Scholar 

  108. Yoon, Y. H. and J. H. Nelson (1984) Application of gas adsorption kinetics. I. A theoretical model for respirator cartridge service time. Am. Ind. Hyg. Assoc. J. 45: 509–516.

    CAS  Google Scholar 

  109. Yan, G., T. Viraraghavan, and M. Chen (1999) A new model for heavy metal removal in a biosorption column. Adsorpt. Sci. Technol. 19: 25–43.

    Article  Google Scholar 

  110. Clark, R. M. (1987) Evaluating the cost and performance of field-scale granular activated carbon systems. Environ. Sci. Technol. 21: 573–580.

    Article  CAS  Google Scholar 

  111. Tien, C. (2007) Remarks on adsorption manuscripts received and declined: an editorial. Sep. Purif. Technol. 54: 277–278.

    Article  CAS  Google Scholar 

  112. Tien, C. (2008) Remarks on adsorption manuscripts revised and declined: an editorial. J. Hazard. Mater. 150: 2–3.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Moon Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, D., Yun, YS. & Park, J.M. The past, present, and future trends of biosorption. Biotechnol Bioproc E 15, 86–102 (2010). https://doi.org/10.1007/s12257-009-0199-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-009-0199-4

Keywords

Navigation