Skip to main content
Log in

Cd, Cu, Ni, Mn and Zn resistance and bioaccumulation by thermophilic bacteria, Geobacillus toebii subsp. decanicus and Geobacillus thermoleovorans subsp. stromboliensis

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bioaccumulation and heavy metal resistance of Cd2+, Cu2+, Ni2+, Zn2+ and Mn2+ ions by thermophilic Geobacillus toebii subsp. decanicus and Geobacillus thermoleovorans subsp. stromboliensis were investigated. The metal resistance from the most resistant to the most sensitive was found as Mn > Ni > Cu > Zn > Cd for both Geobacillus thermoleovorans subsp. stromboliensis and Geobacillus toebii subsp. decanicus. It was determined that the highest metal bioaccumulation was performed by Geobacillus toebii subsp. decanicus for Zn (36,496 μg/g dry weight cell), and the lowest metal bioaccumulation was performed by Geobacillus toebii subsp. decanicus for Ni (660.3 μg/g dry weight cell). Moreover, the dead cells were found to biosorbe more metal in their membranes compared to the live cells. In the presence of 7.32 mg/l Cd concentration, the levels of Cd absorbed in live and dead cell membranes were found as 17.44 and 46.2 mg/g membrane, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adiguzel A, Ozkan H, Baris O, Inan K, Gulluce M, Sahin F (2009) Identification and characterization of thermophilic bacteria isolated from hot springs in Turkey. J Microbiol Method 79:321–328

    Article  CAS  Google Scholar 

  • Ansari MI, Malik A (2007) Biosorption of nickel and cadmium by metal resistant bacterial isolates from agricultural soil irrigated with industrial wastewater. Bioresour Technol 98:3149–3153

    Article  CAS  Google Scholar 

  • Donmez G, Aksu Z (2001) Bioaccumulation of copper (II) and nickel (II) by the non-adapted and adapted growing Candida spp. Water Res 35:135–142

    Article  Google Scholar 

  • El-Helow ER, Sabry SA, Amer RM (2000) Cadmium biosorption by a cadmium resistant strain of Bacillus thuringiensis: regulation and optimization of cell surface affinity for metal cations. Biometals 13:273–280

    Article  CAS  Google Scholar 

  • Gadd GM (1992) Metals and microorganisms: a problem of definition. FEMS Microbiol Lett 100:197–204

    CAS  Google Scholar 

  • Han R, Li H, Li Y, Zhang J, Xiao H, Shi J (2006) Biosorption of copper and lead ions by waste beer yeast. J Hazard Mat 137:1569–1576

    Article  CAS  Google Scholar 

  • Hartley E, Cairney JWG, Meharg AA (1997) Do ectomychorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the environment? Plant Soil 189:303–319

    Article  CAS  Google Scholar 

  • Hassen A, Saidi N, Cherifh M, Boudabous A (1998) Effects of heavy metals on Pseudomonas aueriginosa and Bacillus thuringiensis. Bioresour Technol 65:73–82

    Article  CAS  Google Scholar 

  • Hetzer A, Daughney CJ, Morgan HW (2006) Cadmium ion biosorption by the thermophilic bacteria Geobacillus stearothermophilus and G. thermocatenulatus. Appl Environ Microbiol 72:4020–4027

    Article  CAS  Google Scholar 

  • Hsieh JL, Chen CY, Chang JS, Endo G, Huang CC (2007) Over expression of a single membran component from the Bacillus mer operon enhanced mercury resistance in an Escherichia coli Host. Biosci Biotechnol Biochem 71:1494–1499

    Article  CAS  Google Scholar 

  • Iyer A, Mody K, Jha B (2005) Biosorption of heavy metals by a marine bacterium. Marine Poll Bull 50:340–343

    Article  CAS  Google Scholar 

  • Kondo I, Ishikawa T, Nakahara H (1974) Mercury and cadmium resistance mediated by the penicillinase plasmid in Staphylococcus aureus. J Bacteriol 117:1–7

    CAS  Google Scholar 

  • Leung WC, Wong MF, Chua H, Lo W, Yu PHF, Leung CK (2000) Removal and recovery of heavy metals by bacteria isolated from activated sludge treating industrial effluents and municipal wastewater. Water Sci Technol 41:233–240

    CAS  Google Scholar 

  • Madrid Y, Camara C (1997) Biological substrates for metal preconcentration and speciation. Trend Anal Chem 16:36–44

    Article  CAS  Google Scholar 

  • Malik A (2004) Metal bioremediation through growing cells. Environ Int 30:261–278

    Article  CAS  Google Scholar 

  • Matheickal JT, Yu Q (1999) Biosorption of lead(II) and copper(II) from aqueous solutions by pre-treated biomass of Australian marine algae. Bioresour Technol 69:223–229

    Article  CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  CAS  Google Scholar 

  • Parvathi K, Kumar RN, Nagendran R (2006) Biosorption of manganese by Aspergillus niger and Saccharomyces cerevisiae. World J Microbiol Biotechnol 23:671–676

    Article  Google Scholar 

  • Poli A, Esposito E, Lama L, Orlando P, Nicolaus G, de Appolonia F, Gambacorta A, Nicolaus B (2006) Anoxybacillus amylolyticus sp. nov., a thermophilic amylase producing bacterium isolated from Mount Rittmann (Antarctica). Syst Appl Microbiol 29:300–307

    Article  CAS  Google Scholar 

  • Poli A, Salerno A, Laezza G, Di Donato P, Dumontet S, Nicolaus B (2009) Heavy metal resistance of some thermophiles: potential use of alpha-amylase from Anoxybacillus amylolyticus as microbial enzymatic bioassay. Res Microbiol 160:99–106

    Article  CAS  Google Scholar 

  • Salehizadeh H, Shojaosadati SA (2003) Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus. Water Res 37:4231–4235

    Article  CAS  Google Scholar 

  • Sar P, Kazy SK, Singh SP (2001) Intracellular nickel accumulation by Pseudomonas aeruginosa and its chemical nature. Lett Appl Microbiol 32:257–261

    Article  CAS  Google Scholar 

  • Satchanska G, Pentcheva EN, Atanasova R, Groudeva V, Trifonova R, Golovinsky E (2005) Microbial diversity in heavy-metal polluted waters. Environ Biotechnol 19:61–67

    CAS  Google Scholar 

  • Sauge-Merle S, Cuine S, Carrier P, Lecomte-Pradines C, Luu DT, Peltier G (2003) Enhanced toxic metal accumulation in engineered bacterial cells expressing Arabidopsis thaliana phytochelatin synthase. Appl Environ Microbiol 69:490–494

    Article  CAS  Google Scholar 

  • Scott JA, Palmer SJ (1990) Sites of cadmium uptake in bacteria used for biosorption. Appl Microbiol Biotechnol 33:221–225

    Article  CAS  Google Scholar 

  • Srinath T, Verma T, Ramteke PW, Garg SK (2002) Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere 48:427–435

    Article  CAS  Google Scholar 

  • Teitzel GM, Parsek MR (2003) Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginos. Appl Environ Microbiol 69:2313–2320

    Article  CAS  Google Scholar 

  • Vecchio A, Finoli C, Simine DD, Andreoni V (1998) Heavy metal biosorption by bacterial cells. Fresenius J Anal Chem 361:338–342

    Article  CAS  Google Scholar 

  • Verma SK, Singh HN (1991) Evidence for energy-dependent copper efflux as a mechanism of Cu + 2 resistance in cyanobacterium Nosioc calciocola. FEMS Microbiol Lett 84:291–294

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Yun YS (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291

    Article  CAS  Google Scholar 

  • Vodnik D, Byrne AR, Gogala N (1998) The uptake and transport of lead in some ectomycorrhizal fungi in culture. Mycol Res 102:953–958

    Article  CAS  Google Scholar 

  • Volesky B, May-Phillips HA (1995) Biosorption of heavy metals by Saccharomyces cerevisiae. Appl MicrobiolBiotechnol 42:797–806

    CAS  Google Scholar 

  • Volesky B, May H, Holan ZR (1993) Cadmium biosorption by Saccharomyces cerevisiae. Biotechnol Bioeng 41:826–829

    Article  CAS  Google Scholar 

  • Yilmaz IE (2003) Metal tolerance and biosorption capacity of Bacillus circulans strain EB1. Res Microbiol 154:409–413

    Article  Google Scholar 

  • Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kemal Güven.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Özdemir, S., Kilinc, E., Poli, A. et al. Cd, Cu, Ni, Mn and Zn resistance and bioaccumulation by thermophilic bacteria, Geobacillus toebii subsp. decanicus and Geobacillus thermoleovorans subsp. stromboliensis . World J Microbiol Biotechnol 28, 155–163 (2012). https://doi.org/10.1007/s11274-011-0804-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-011-0804-5

Keywords

Navigation