Skip to main content

Advertisement

Log in

Response of native soil microbial functions to the controlled mycorrhization of an exotic tree legume, Acacia holosericea in a Sahelian ecosystem

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Fifty years of overexploitation have disturbed most forests within Sahelian areas. Exotic fast growing trees (i.e., Australian Acacia species) have subsequently been introduced for soil improvement and fuelwood production purposes. Additionally, rhizobial or mycorrhizal symbioses have sometimes been favored by means of controlled inoculations to increase the performance of these exotic trees in such arid and semiarid zones. Large-scale anthropogenic introduction of exotic plants could also threaten the native biodiversity and ecosystem resilience. We carried out an experimental reforestation in Burkina Faso in order to study the effects of Acacia holosericea mycorrhizal inoculation on the soil nutrient content, microbial soil functionalities and mycorrhizal soil potential. Treatments consisted of uninoculated A. holosericea, preplanting fertilizer application and arbuscular mycorrhizal inoculation with Glomus intraradices. Our results showed that (i) arbuscular mycorrhizal (AM) inoculation and prefertilizer application significantly improved A. holosericea growth after 4 years of plantation and (ii) the introduction of A. holosericea trees significantly modified soil microbial functions. The results clearly showed that the use of exotic tree legume species should be directly responsible for important changes in soil microbiota with great disturbances in essential functions driven by microbial communities (e.g., catabolic diversity and C cycling, phosphatase activity and P availability). They also highlighted the importance of AM symbiosis in the functioning of soils and forest plantation performances. The AM effect on soil functions was significantly correlated with the enhanced mycorrhizal soil potential recorded in the AM inoculation treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson TH, Domsch KH (1989) Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biol Biochem 21:471–479

    Article  Google Scholar 

  • Austin MP (1987) Models for analyses of species’ response to environmental gradients. Vegetatio 69:35–45

    Article  Google Scholar 

  • Bardgett RD (2005) The biology of soil. Oxford University Press, Oxford, p 242

    Book  Google Scholar 

  • Bardgett RD, McAlister E (1999) The measurement of soil fungal: bacterial biomass ratios as an indicator of ecosystem self-regulation in temperate meadow grasslands. Biol Fertil Soils 29:282–290

    Article  Google Scholar 

  • Bargali SS, Singh RP, Joshi M (1993) Changes in soil characteristics in eucalypt plantations replacing natural broadleaved forests. J Veg Sci 4:25–28

    Article  Google Scholar 

  • Boesch DF (2006) Scientific requirements for ecosystem-based management in the restoration of Chesapeak Bay and coastal Louisiana. Ecol Eng 26:6–26

    Article  Google Scholar 

  • Bossio D, Scow K, Gunapala N (1998) Determinants of soil microbial communities: effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microbiol Ecol 36:1–12

    Article  CAS  Google Scholar 

  • Brundrett MC (1991) Mycorrhizas in natural ecosystems. In: Macfayden A, Begon M, Fitter AH (eds) Advances in ecological research, vol 21. Academic, London, pp 171–313

    Google Scholar 

  • Callaway RM, Ridenour WM (2004) Novel weapons: invasive success and the evolution of increased competitive ability. Front Ecol Environ 2:436–443

    Article  Google Scholar 

  • Caravaca F, Alguacil MM, Azcon R, Diaz G, Roldan G (2004) Comparing the effectiveness of mycorrhizal inoculum and amendment with sugar beet, rock phosphate and Aspergillus niger to enhance field performance of the leguminous shrub Dorycnium pentaphyllum L. Appl Soil Ecol 25:169–180

    Article  Google Scholar 

  • Carpenter AT, Allen MF (1988) Responses of Hedysarum borelae Nutt. to mycorrhizas and Rhizobium: plant and soil nutrient changes in a disturbed shrub-steppe. New Phytol 109:125–132

    Article  Google Scholar 

  • Cornet F, Diem HG, Dommergues YR (1982) Effet de l’inoculation avec Glomus mosseae sur la croissance d’Acacia holosericea en pépinière et après transplantation sur le terrain, In: Les Mycorhizes: biologie et utilisation. INRA, Dijon, pp 287–293

  • Cossalter C (1986) Introducing Australian acacias in dry, tropical Africa, Australian acacias in developing countries. In: Turnbull JW (ed) Proceedings of an international workshop at the Forestry Training Center. Gympie, Australia. ACIAR, Canberra, pp 118–122

    Google Scholar 

  • Cossalter C (1987) Introduction of Australian acacias into dry, tropical West Africa. For Ecol Manag 16:367–389

    Article  Google Scholar 

  • Culhane AC, Perriere G, Considine EC, Cotter TG, Higgins DG (2002) Between-group analysis of microarray data. Bioinformatics 18:1600–1608

    Article  PubMed  CAS  Google Scholar 

  • D’Odorico P, Laio F, Ridolfi L (2005) Noise-induced stability in dryland plant ecosystems. PNAS 102:10819–10822

    Article  PubMed  Google Scholar 

  • Dabire AP, Hien V, Kisa M, Bilgo A, Sangare KS, Plenchette C, Galiana A, Prin Y, Duponnois R (2007) Responses of soil microbial catabolic diversity to arbuscular mycorrhizal inoculation and soil disinfection. Mycorrhiza 17:537–545

    Article  PubMed  CAS  Google Scholar 

  • de la Cruz RE, Garcia MU (1991) Nitrogen fixation and mycorrhizae in acacias on degraded grasslands. In: Awang K, Taylor DA (eds) Tropical acacias in East Asia and the Pacific. Winrock International, Bangkok, pp 59–71

    Google Scholar 

  • Degens BP, Harris JA (1997) Development of a physiological approach to measuring the metabolic diversity of soil microbial communities. Soil Biol Biochem 29:1309–1320

    Article  CAS  Google Scholar 

  • Degens BP, Vojvodic-Vukovic M (1999) A sampling strategy to assess the effects of land use on microbial functional diversity in soils. Aust J Soil Res 37:593–601

    Google Scholar 

  • Degens BP, Shipper LA, Sparling GP, Duncan LC (2001) Is the microbial community in a soil with reduced catabolic diversity less resistant to stress or disturbance? Soil Biol Biochem 33:1143–153

    Article  CAS  Google Scholar 

  • del Moral R, Muller CH (1970) The allelopathic effects of Eucalyptus camaldulensis. Am Midl Nat 83:254–282

    Article  Google Scholar 

  • Diallo MD, Duponnois R, Guisse A, Sall S, Chotte J-L, Thioulouse J (2006) Biological effects of native and exotic plant residues on plant growth, microbial biomass and N availability under controlled conditions. Eur J Soil Biol 42:238–246

    Article  CAS  Google Scholar 

  • Dolédec S, Chessel D (1989) Rythmes saisonniers et composantes stationnelles en milieu aquatique II- Prise en compte et élimination d’effets dans un tableau faunistique. Acta Oecol 10:207–232

    Google Scholar 

  • Drobner U, Bibby J, Smith B, Wilson JB (1998) The relation between community biomass and evenness: what does community theory predict and can these prediction be tested? Oikos 82:295–302

    Article  Google Scholar 

  • Duponnois R, Plenchette C (2003) A mycorrhiza helper bacterium (MHB) enhances ectomycorrhizal and endomycorrhizal symbiosis of Australian Acacia species. Mycorrhiza 13:85–91

    Article  PubMed  CAS  Google Scholar 

  • Duponnois R, Plenchette C, Thioulouse J, Cadet P (2001) The mycorrhizal soil infectivity and arbuscular mycorrhizal fungal spore communities in soils of different aged fallows in Senegal. Appl Soil Ecol 17:239–251

    Article  Google Scholar 

  • Duponnois R, Founoune H, Masse D, Pontanier R (2005) Inoculation of Acacia holosericea with ectomycorrhizal fungi in a semiarid site in Senegal: growth response and influences on the mycorrhizal soil infectivity after 2 years plantation. For Ecol Manag 207:351–362

    Article  Google Scholar 

  • Duponnois R, Plenchette C, Prin Y, Ducousso M, Kisa M, Bâ AM, Galiana A (2007) Use of mycorrhizal inoculation to improve reafforestation process with Australian Acacia in Sahelian ecozones. Ecol Eng 29:105–112

    Article  Google Scholar 

  • Frey B, Schüepp H (1993) Acquisition of nitrogen by external hyphae of arbuscular mycorrhizal fungi associated with Zea mays L. New Phytol 124:221–230

    Article  Google Scholar 

  • Galiana A, Prin Y, Mallet B, Ghahona GM, Poitel M, Diem HG (1994) Inoculation of Acacia mangium with alginate beads containing Bradyrhizobium strains under field conditions: long-term effect on plant growth and persistence of the introduced strain in soil. Appl Environ Microbiol 60:3974–3980

    PubMed  CAS  Google Scholar 

  • Garcia C, Hernandez T (1996) Influence of salinity on the biological and biochemical activity of a calciorthid soil. Plant Soil 178:225–263

    Article  Google Scholar 

  • Garcia C, Roldan A, Hernandez T (1997) Changes in microbial activity after abandonment of cultivation in a semiarid Mediterranean environment. J Environ Qual 26:285–291

    Article  CAS  Google Scholar 

  • Garcia C, Roldan A, Hernandez T (2005) Ability of different plant species to promote microbiological processes in semiarid soil. Geoderma 124:193–202

    Article  CAS  Google Scholar 

  • Grayston SJ, Vaughan D, Jones D (1996) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29–56

    Article  Google Scholar 

  • Heinemeyer O, Insam H, Kaiser EA, Walenzik G (1989) Soil microbial biomass and respiration measurements: an automated technique based on infrared gas analysis. Plant Soil 116:77–81

    Article  Google Scholar 

  • Huberty CJ (1994) Applied discriminant analysis. Wiley, New York

    Google Scholar 

  • Insam H (1990) Are the soil microbial biomass and basal respiration governed by the climatic regime? Soil Biol Biochem 22:525–532

    Article  Google Scholar 

  • Insam H, Domsch KH (1988) Relationship between soil organic carbon and microbial biomass on chronosequences of reclamation sites. Microbiol Ecol 15:177–188

    Article  Google Scholar 

  • Insam H, Merschak P (1997) Nitrogen leaching from forest soil cores after amending organic recycling products and fertilizers. Waste Manage Res 15:277–292

    CAS  Google Scholar 

  • Jakobsen I, Rosendahl L (1990) Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytol 115:77–83

    Article  Google Scholar 

  • Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13

    Article  PubMed  CAS  Google Scholar 

  • John MK (1970) Colorimetric determination in soil and plant material with ascorbic acid. Soil Sci 68:171–177

    Google Scholar 

  • Joner EJ, Johansen A (2000) Phosphatase activity of external hyphae of two arbuscular mycorrhizal fungi. Mycol Res 104:81–86

    Article  CAS  Google Scholar 

  • Joner EJ, Magid J, Gahoonia TS, Jakobsen I (1995) P depletion and activity of phosphatases in the rhizosphere of mycorrhizal and non mycorrhizal cucumber (Cucumis sativus L.). Soil Biol Biochem 27:1145–1151

    Article  CAS  Google Scholar 

  • Jones DL, Dennis PG, Owen AG, van Hees PAW (2003) Organic acid behavior in soils — misconceptions and knowledge gaps. Plant Soil 248:31–41

    Article  CAS  Google Scholar 

  • Kisa M, Sanon A, Thioulouse J, Assigbetse K, Sylla S, Spichiger R, Dieng L, Berthelin J, Prin Y, Galiana A, Lepage M, Duponnois R (2007) Arbuscular mycorrhizal symbiosis can counterbalance the negative influence of the exotic tree species Eucalyptus camaldulensis on the structure and functioning of soil microbial communities in a sahelian soil. FEMS Microbiol Ecol 62:32–44

    Article  PubMed  CAS  Google Scholar 

  • Kourtev PS, Ehrenfeld JG, Haggblom M (2003) Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities. Soil Biol Biochem 35:895–905

    Article  CAS  Google Scholar 

  • Lavorel S (1999) Ecological diversity and resilience of Mediterranean vegetation to disturbance. Divers Distrib 5:3–13

    Article  Google Scholar 

  • Linderman RG (1988) Mycorrhizal interactions with the rhizosphere microflora: the mycorrhizosphere effect. Phytopathology 78:366–371

    Google Scholar 

  • Lundström US, Van Breemen N, Jongmans AG (1995) Evidence for microbial decomposition of organic acids during podzolization. Eur J Soil Sci 46:489–496

    Article  Google Scholar 

  • Ma Z, Miyasaka SC (1998) Oxalate exudation by taro in response to Al. Plant Physiol 118:861–865

    Article  PubMed  Google Scholar 

  • Magurran AE (1988) Ecological diversity and its measurement. Croom Helm, London

    Google Scholar 

  • Marilley L, Aragno M (1999) Phylogenetic diversity of bacterial communities differing in degree of proximity of Lolium perenne and Trifolium repens roots. Appl Soil Ecol 13:127–136

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London

    Google Scholar 

  • Micales JA (1997) Localization and induction of oxalate decarboxylase in the brown-rot wood decay fungus Postia placenta. Int J Biodet Biodegr 39:125–132

    Article  CAS  Google Scholar 

  • Odum EP (1959) Fundamentals of ecology. Saunders, Philadelphia, p 546

    Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. U.S. Department of Agriculture circular, vol 546. U.S. Department of Agriculture, Washington, DC, p 19

    Google Scholar 

  • Ouahmane L, Thioulouse J, Hafidi M, Prin Y, Ducousso M, Galiana A, Plenchette C, Kisa M, Duponnois R (2007) Soil functional diversity and P solubilization from rock phosphate after inoculation with native or allochtonous arbuscular mycorrhizal fungi. For Ecol Manag 241:190–199

    Article  Google Scholar 

  • Peterson G, Allen CR, Holling CS (1998) Ecological resilience, biodiversity, and scale. Ecosystems 1:6–18

    Article  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org

  • Rejmanek M (2000) Invasive plants: approaches and predictions. Austral Ecol 25:497–506

    Article  Google Scholar 

  • Remigi P, Faye A, Kane A, Deruaz M, Thioulouse J, Cissoko M, Prin Y, Galiana A, Dreyfus B, Duponnois R (2008) The exotic legume tree species Acacia holosericea alters microbial soil functionalities and the structure of the arbuscular mycorrhizal community. Appl Environ Microbiol 74:1485–1493

    Article  PubMed  CAS  Google Scholar 

  • Richardson DM, Allsopp N, D’Antonio CM, Milton SJ, Rejmanek M (2000) Plant invasion — the role of mutualisms. Biol Rev Camb Phil Soc 75:65–93

    Article  CAS  Google Scholar 

  • Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Mol Biol 52:527–560

    Article  CAS  Google Scholar 

  • Sanon A, Martin P, Thioulouse J, Plenchette C, Spichiger R, Lepage M, Duponnois R (2006) Displacement of an herbaceous plant species community by mycorrhizal and non-mycorrhizal Gmelina arborea, an exotic tree, grown in a microcosm experiment. Mycorrhiza 16:125–132

    Article  PubMed  Google Scholar 

  • Schnürer T, Rosswall T (1982) Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Appl Environ Microbiol 43:1256–1261

    PubMed  Google Scholar 

  • Shachar-Hill Y, Pfeffer PE, Douds D, Osman SF, Doner LW, Ratcliffe RG (1995) Partitioning of intermediary carbon metabolism in vesicular-arbuscular mycorrhizal leeks. Plant Physiol 108:7–15

    PubMed  CAS  Google Scholar 

  • Sicardi M, Garcia-Préchac F, Frioni L (2004) Soil microbial indicators sensitive to land use conversion from pastures to commercial Eucalyptus grandis (Hill ex Maiden) plantations in Uruguay. Appl Soil Ecol 27:125–133

    Article  Google Scholar 

  • Skujins J (1976) Extracellular enzymes in soil. Crit Rev Microbiol 4:383–421

    Article  CAS  Google Scholar 

  • Sparling GP (1995) The substrate induced respiration method. In: Alef K, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry. Academic, London, pp 397–404

    Google Scholar 

  • Stevenson BA, Sparling GP, Schipper LA, Degens BP, Duncan LC (2004) Pasture and forest soil microbial communities show distinct patterns in their catabolic respiration responses at a landscape scale. Soil Biol Biochem 36:49–55

    Article  CAS  Google Scholar 

  • Sylvia DM, Jarstfer AG (1992) Sheared-root inocula of vesicular–arbuscular mycorrhizal fungi. Appl Environ Microbiol 58:229–232

    PubMed  CAS  Google Scholar 

  • Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1:301–307

    Article  CAS  Google Scholar 

  • Thébaud C, Simberloff D (2001) Are plants really larger in their introduced ranges? Am Nat 157:231–236

    Article  PubMed  Google Scholar 

  • Thioulouse J, Dray S (2007) Interactive multivariate data analysis in R with the ade4 and ade4TkGUI packages. J Stat Soft 22:1–14

    Google Scholar 

  • van der Heijden MGA, Boller T, Wiemken A, Sanders IR (1998a) Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79:2082–2091

    Article  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Poutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998b) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics. Springer, New York

    Google Scholar 

  • Wardle DA (2002) Communities and ecosystems: linking the aboveground and belowground components. Monographs in population biology, vol 34. Princeton University Press, Princeton, p 392

    Google Scholar 

  • West AW, Sparling GP (1986) Modifications to the substrate-induced respiration method to permit measurements of microbial biomass in soils of different water contents. J Microbiol Meth 5:177–189

    Article  CAS  Google Scholar 

  • Zerbo L, Koné N, Morant P, Thiombiano L (1995) Rapport sur la caractérisation des sols des stations de recherches agricoles de l’INERA: Kambouinsé. Farako-ba, Saria, Niangoloko, p 109

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Duponnois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bilgo, A., Sangare, S.K., Thioulouse, J. et al. Response of native soil microbial functions to the controlled mycorrhization of an exotic tree legume, Acacia holosericea in a Sahelian ecosystem. Mycorrhiza 22, 175–187 (2012). https://doi.org/10.1007/s00572-011-0390-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-011-0390-2

Keywords

Navigation