Skip to main content
Log in

Relationship between soil organic carbon and microbial biomass on chronosequences of reclamation sites

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The interrelationship between soil microorganisms and soil organic carbon was studied on an agricultural and on a forest chronosequence of open-pit mine reclamation soils. Thirty years after reclamation, soil carbon levels of 0.8% on the agricultural sites and 1.7% on the forest sites (A-horizon) were reached. Microbial biomass rose very fast to levels characteristic of undisturbed soils. Microbial carbon (Cmier) was 57 mg·100 g−1 soil after 15 years on the agricultural sites and 43 mg·100 g−1 on the forest sites. The contribution of Cmier to the total organic carbon (Corg) decreased with time, more rapidly on the forest sites than on the agricultural ones. From the Cmierr/Corg ratio it became evident that both chronosequences had not yet reached a steady state within the 50 years of reclamation. A significant decrease of the metabolic quotient qCO2 (microbial respiration per unit biomass) with time was observed on the agricultural sites but not on the forest sites. The Cmier/Corg ratio proved to be a reliable soil microbial parameter for describing changes in man-made ecosystems. For evaluating reclamation efforts, the Cmier/Corg ratio can be considered superior to its single components (Cmier or Corg) and to other parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson JPE, Domsch KH (1978) A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol Biochem 10:215–221

    Article  Google Scholar 

  2. Anderson TH, Domsch KH (1985) Determination of ecophysiological maintenance carbon requirements of soil microorganisms in a dormant state. Biol Fert Soils 1:81–89

    Article  Google Scholar 

  3. Anderson TH, Domsch KH (in press) Carbon link between microbial biomass and soil organic matter. Symp Vol of the 4th Intl Symposium on Microbial Ecology, Ljubljana, Yugoslavia

  4. Azam F, Malik KA, Hussain F (1986) Microbial biomass and mineralization-immobilization of nitrogen in some agricultural soils. Biol Fert Soils 2:157–163

    Article  Google Scholar 

  5. Beck T (1984) Mikrobiologische und biochemische Charakterisierung landwirtschaftlich genutzter Böden. II. Mitteilung. Beziehungen zum Humushaushalt. Z Pflanzenern Bodenk 147: 467–475

    Google Scholar 

  6. Burykin AM (1985) Soil formation rates in man-made landscapes as related to recultivation. Pochvovedeniye 2:81–93

    Google Scholar 

  7. Dickson BA, Crocker RL (1953) A chronosequence of soils and vegetation near Mt. Shasta, California. II. The development of the forest floors and the carbon and nitrogen profiles of the soil. J Soil Science 4:142–154

    Google Scholar 

  8. Dunger W (1967) Die Entwicklung der Makro- und Megafauna in rekultivierten Haldenböden. In: GraffO, Satchell JE (eds) Proc colloq dynamics of soil communities. Vieweg, Braunschweig, pp 340–352

    Google Scholar 

  9. Heal OW, MacLean JF Jr (1975) Comparative productivity in ecosystems—secondary productivity. In: Van Dobben WH, Lowe RH (eds) Unifying concepts in ecology. Junk, The Hague

    Google Scholar 

  10. Hersman LE, Temple KL (1978) ATP as a parameter for characterising coal strip mine spoils. Soil Sci 126:350–352

    Google Scholar 

  11. Jenkinson DS, Ladd JN (1981) Microbial biomass in soil: measurement and turnover. In: Paul EA, Ladd JN (eds) Soil biochemistry 5. Marcel Dekker, New York, pp 415–471

    Google Scholar 

  12. Jenkinson DS, Powlson DS (1976) The effects of biocidal treatments on metabolism in soil. V. A method for measuring soil biomass. Soil Biol Biochem 8:209–213

    Article  Google Scholar 

  13. Kauri T (1982) Seasonal fluctuations in numbers of aerobic bacteria and their spores in four horizons of a beech forest soil. Soil Biol Biochem 14: 185–190

    Article  Google Scholar 

  14. Klein DA, Sorensen DL, Redente EF (1985) Soil enzymes: a predictor of reclamation potential and progress. In: Tate RL, Klein DA (eds) Soil reclamation processes. Marcel Dekker, New York, pp 141–172

    Google Scholar 

  15. Lang E (1986) Heterotrophe und autotrophe Nitrifikation untersucht an Bodenproben von drei Buchenstandorten. Göttinger Bodenkundliche Berichte 89:1–199

    Google Scholar 

  16. Lawrey JD (1977) The relative decomposition potential of habitats variously affected by surface of coal mining. Can J Bot 55:1544–1552

    Google Scholar 

  17. Odum EP (1969) The strategy of ecosystem development. Science 164:262–270

    PubMed  Google Scholar 

  18. Parkinson D (1985) The restoration of soil productivity. In: Holdgate MW, Woodman MJ (eds) The breakdown and restoration of ecosystems. Plenum Press, New York, London, pp 213–229

    Google Scholar 

  19. Sauerbeck D, Gonzalez MA (1977) Field decomposition of carbon14-labelled plant residues in various soils of the Federal Republic of Germany and Costa Rica. IAEA; FAO; Agrochimica: soil organic matter studies. Proc Symp 1:159–170

    Google Scholar 

  20. Schafer WM, Nielsen GA, Dollhopf DJ, Temple K (1979) Soil genesis, hydrological properties, root characteristics and microbial activity of 1- to 50-year-old stripmine spoils. EPA-600/7-79-100. Environmental Protection Agency, Cincinnati, Ohio

    Google Scholar 

  21. Schröder D (1986) Properties of reclaimed soils on loess. Transactions of the XIII Congress of the International Society of Soil Science 4:1403–1404

    Google Scholar 

  22. Schröder D, Stephan S, Schulte-Karring H (1985) Eigenschaften, Entwicklung und Wert rekultivierter Böden aus Löss im Gebiet des Rheinischen Braunkohlen-Tagebaues. Z Pflanzenernaehr Bodenk 148:131–146

    Google Scholar 

  23. Skujins J, Richardson BZ (1985) Humic matter enrichment in reclaimed soils under semiarid conditions. Geomicrobiology Journal 4:299–311

    Google Scholar 

  24. Stroo HF, Jencks EM (1982) Enzyme activity and respiration in minesoils. Soil Sci Soc Am J 46:548–553

    Google Scholar 

  25. Tate RL (1985) Microorganisms, ecosystem disturbance and soil-formation processes. In: Tate RL III, Klein DA (eds) Soil reclamation processes. Marcel Dekker, New York, Basel, pp 1–34

    Google Scholar 

  26. Visser S, Griffiths CL, Parkinson D (1983) Effects of surface mining on the microbiology of a prairie site in Alberta, Canada. Can J Soil Sci 63:177–189

    Google Scholar 

  27. Wittig R, Gödde M, Neite H, Papajewski W, Schall O (1985) Die Buchenwälder auf den Rekultivierunsflächen im Rheinischen Braunkohlenrevier: Artenkombination, pflanzensoziologische Stellung und Folgerungen für zukünftige Rekultivierungen. Angew Botanik 59: 95–112

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Insam, H., Domsch, K.H. Relationship between soil organic carbon and microbial biomass on chronosequences of reclamation sites. Microb Ecol 15, 177–188 (1988). https://doi.org/10.1007/BF02011711

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02011711

Keywords

Navigation