Skip to main content

Advertisement

Log in

Gastric cancer stem cells: evidence, potential markers, and clinical implications

  • Review
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Gastric cancer is a significant global health problem. It is the fifth most common cancer and third leading cause of cancer-related death worldwide (Torre et al. in CA Cancer J Clin 65(2):87–108, 2015). Despite advances in treatment, overall prognosis remains poor, due to tumour relapse and metastasis. There is an urgent need for novel therapeutic approaches to improve clinical outcomes in gastric cancer. The cancer stem cell (CSC) model has been proposed to explain the high rate of relapse and subsequent resistance of cancer to current systemic treatments (Vermeulen et al. in Lancet Oncol 13(2):e83–e89, 2012). CSCs have been identified in many solid malignancies, including gastric cancer, and have significant clinical implications, as targeting the CSC population may be essential in preventing the recurrence and spread of a tumour (Dewi et al. in J Gastroenterol 46(10):1145–1157, 2011). This review seeks to summarise the current evidence for CSC in gastric cancer, with an emphasis on candidate CSC markers, clinical implications, and potential therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.

    Article  PubMed  Google Scholar 

  2. Vermeulen L, de Sousa e Melo F, Richel DJ, et al. The developing cancer stem-cell model: clinical challenges and opportunities. Lancet Oncol. 2012;13(2):e83–9.

    Article  PubMed  Google Scholar 

  3. Dewi DL, Ishii H, Kano Y, et al. Cancer stem cell theory in gastrointestinal malignancies: recent progress and upcoming challenges. J Gastroenterol. 2011;46(10):1145–57.

    Article  PubMed  Google Scholar 

  4. Ding L, Raphael BJ, Chen F, et al. Advances for studying clonal evolution in cancer. Cancer Lett. 2013;340(2):212–9.

    Article  CAS  PubMed  Google Scholar 

  5. O’Connor ML, Xiang D, Shigdar S, et al. Cancer stem cells: a contentious hypothesis now moving forward. Cancer Lett. 2014;344(2):180–7.

    Article  PubMed  CAS  Google Scholar 

  6. Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–11.

    Article  CAS  PubMed  Google Scholar 

  7. Vermeulen L, De Sousa EMF, van der Heijden M, et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol. 2010;12(5):468–76.

    Article  CAS  PubMed  Google Scholar 

  8. Liu S, Ginestier C, Ou SJ, et al. Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res. 2011;71(2):614–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Notta F, Mullighan CG, Wang JC, et al. Evolution of human BCRABL1 lymphoblastic leukaemia-initiating cells. Nature. 2011;469(7330):362–7.

    Article  CAS  PubMed  Google Scholar 

  10. Shackleton M, Quintana E, Fearon ER, et al. Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell. 2009;138(5):822–9.

    Article  CAS  PubMed  Google Scholar 

  11. Takaishi S, Okumura T, Tu S, et al. Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells. 2009;27(5):1006–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu J, Ma L, Xu J, et al. Spheroid body-forming cells in the human gastric cancer cell line MKN-45 possess cancer stem cell properties. Int J Oncol. 2013;42(2):453–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Xu G, Shen J, Ou Yang X, et al. Cancer stem cells: the ‘heartbeat’ of gastric cancer. J Gastroenterol. 2013;48(7):781–97.

    Article  CAS  PubMed  Google Scholar 

  14. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730–7.

    Article  CAS  PubMed  Google Scholar 

  15. Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. PNAS. 2003;100(7):3983–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Collins AT, Berry PA, Hyde C, et al. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005;65(23):10946–51.

    Article  CAS  PubMed  Google Scholar 

  17. Hermann PC, Huber SL, Herrler T, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007;1(3):313–23.

    Article  CAS  PubMed  Google Scholar 

  18. Li C, Heidt DG, Dalerba P, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67(3):1030–7.

    Article  CAS  PubMed  Google Scholar 

  19. Fang D, Nguyen TK, Leishear K, et al. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res. 2005;65(20):9328–37.

    Article  CAS  PubMed  Google Scholar 

  20. O’Brien CA, Pollett A, Gallinger S, et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445(7123):106–10.

    Article  PubMed  CAS  Google Scholar 

  21. Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445(7123):111–5.

    Article  CAS  PubMed  Google Scholar 

  22. Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. Nature. 2004;432(7015):396–401.

    Article  CAS  PubMed  Google Scholar 

  23. Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63(18):5821–8.

    CAS  PubMed  Google Scholar 

  24. Ma S, Chan KW, Hu L, et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology. 2007;132(7):2542–56.

    Article  CAS  PubMed  Google Scholar 

  25. Chen J, Li Y, Yu TS, et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature. 2012;488(7412):522–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Clarke MF, Dick JE, Dirks PB, et al. Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 2006;66(19):9339–44.

    Article  CAS  PubMed  Google Scholar 

  27. Takaishi S, Okumura T, Wang TC. Gastric cancer stem cells. J Clin Oncol. 2008;26(17):2876–82.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sampieri K, Fodde R. Cancer stem cells and metastasis. Sem Can Biol. 2012;22(3):187–93.

    Article  CAS  Google Scholar 

  29. Pang R, Law WL, Chu AC, et al. A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer. Cell Stem Cell. 2010;6(6):603–15.

    Article  CAS  PubMed  Google Scholar 

  30. Croker AK, Goodale D, Chu J, et al. High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability. J Cell Mol Med. 2009;13(8b):2236–52.

    Article  PubMed  Google Scholar 

  31. Dieter SM, Ball CR, Hoffmann CM, et al. Distinct types of tumor-initiating cells form human colon cancer tumors and metastases. Cell Stem Cell. 2011;9(4):357–65.

    Article  CAS  PubMed  Google Scholar 

  32. Mayer B, Jauch KW, Gunthert U, et al. De-novo expression of CD44 and survival in gastric cancer. Lancet. 1993;342(8878):1019–22.

    Article  CAS  PubMed  Google Scholar 

  33. Chen S, Hou JH, Feng XY, et al. Clinicopathologic significance of putative stem cell marker, CD44 and CD133, in human gastric carcinoma. J Surg Oncol. 2013;107(8):799–806.

    Article  CAS  PubMed  Google Scholar 

  34. Meng F, Wu G. The rejuvenated scenario of epithelial-mesenchymal transition (EMT) and cancer metastasis. Cancer Metastasis Rev. 2012;31(3–4):455–67.

    Article  CAS  PubMed  Google Scholar 

  35. Gupta PB, Chaffer CL, Weinberg RA. Cancer stem cells: mirage or reality? Nat Med. 2009;15(9):1010–2.

    Article  CAS  PubMed  Google Scholar 

  36. Mani SA, Guo W, Liao MJ, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):704–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Morel AP, Lievre M, Thomas C, et al. Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One. 2008;3(8):e2888.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Tinhofer I, Saki M, Niehr F, et al. Cancer stem cell characteristics of circulating tumor cells. Int J Radiat Biol. 2014;90(8):622–7.

    Article  CAS  PubMed  Google Scholar 

  39. Li M, Zhang B, Zhang Z, et al. Stem cell-like circulating tumor cells indicate poor prognosis in gastric cancer. BioMed Res Int. 2014;2014:981261.

    PubMed  PubMed Central  Google Scholar 

  40. Ryu HS, do Park J, Kim HH, et al. Combination of epithelial-mesenchymal transition and cancer stem cell-like phenotypes has independent prognostic value in gastric cancer. Hum Pathol. 2012;43(4):520–8.

    Article  PubMed  Google Scholar 

  41. Xue Z, Yan H, Li J, et al. Identification of cancer stem cells in vincristine preconditioned SGC7901 gastric cancer cell line. J Cell Biochem. 2012;113(1):302–12.

    Article  CAS  PubMed  Google Scholar 

  42. Kelly PN, Dakic A, Adams JM, et al. Tumor growth need not be driven by rare cancer stem cells. Science. 2007;317(5836):337.

    Article  CAS  PubMed  Google Scholar 

  43. Marx J. Molecular biology. Cancer’s perpetual source? Science. 2007;317(5841):1029–31.

    Article  CAS  PubMed  Google Scholar 

  44. Yang L, Ping YF, Yu X, et al. Gastric cancer stem-like cells possess higher capability of invasion and metastasis in association with a mesenchymal transition phenotype. Cancer Lett. 2011;310(1):46–52.

    CAS  PubMed  Google Scholar 

  45. Zhou S, Schuetz JD, Bunting KD, et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med. 2001;7(9):1028–34.

    Article  CAS  PubMed  Google Scholar 

  46. Golebiewska A, Brons NH, Bjerkvig R, et al. Critical appraisal of the side population assay in stem cell and cancer stem cell research. Cell Stem Cell. 2011;8(2):136–47.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang H, Xi H, Cai A, et al. Not all side population cells contain cancer stem-like cells in human gastric cancer cell lines. Dig Dis Sci. 2013;58(1):132–9.

    Article  PubMed  Google Scholar 

  48. Nishii T, Yashiro M, Shinto O, et al. Cancer stem cell-like SP cells have a high adhesion ability to the peritoneum in gastric carcinoma. Cancer Sci. 2009;100(8):1397–402.

    Article  CAS  PubMed  Google Scholar 

  49. Fukuda K, Saikawa Y, Ohashi M, et al. Tumor initiating potential of side population cells in human gastric cancer. Int J Oncol. 2009;34(5):1201–7.

    CAS  PubMed  Google Scholar 

  50. She JJ, Zhang PG, Wang X, et al. Side population cells isolated from KATO III human gastric cancer cell line have cancer stem cell-like characteristics. World J Gastroenterol. 2012;18(33):4610–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Burkert J, Otto WR, Wright NA. Side populations of gastrointestinal cancers are not enriched in stem cells. J Pathol. 2008;214(5):564–73.

    Article  CAS  PubMed  Google Scholar 

  52. Bjerknes M, Cheng H. Multipotential stem cells in adult mouse gastric epithelium. Am J Physiol Gastrointest Liver Physiol. 2002;283(3):G767–77.

    Article  CAS  PubMed  Google Scholar 

  53. Wu C, Xie Y, Gao F, et al. Lgr5 expression as stem cell marker in human gastric gland and its relatedness with other putative cancer stem cell markers. Gene. 2013;525(1):18–25.

    Article  CAS  PubMed  Google Scholar 

  54. Barker N, Huch M, Kujala P, et al. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell. 2010;6(1):25–36.

    Article  CAS  PubMed  Google Scholar 

  55. Qiao XT, Ziel JW, McKimpson W, et al. Prospective identification of a multilineage progenitor in murine stomach epithelium. Gastroenterology. 2007;133(6):1989–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Arnold K, Sarkar A, Yram MA, et al. Sox2(+) adult stem and progenitor cells are important for tissue regeneration and survival of mice. Cell Stem Cell. 2011;9(4):317–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Stange DE, Koo BK, Huch M, et al. Differentiated Troy+ chief cells act as reserve stem cells to generate all lineages of the stomach epithelium. Cell. 2013;155(2):357–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang S, Tie J, Wang R, et al. SOX2, a predictor of survival in gastric cancer, inhibits cell proliferation and metastasis by regulating PTEN. Cancer Lett. 2015;358(2):210–9.

    Article  CAS  PubMed  Google Scholar 

  59. Li XL, Eishi Y, Bai YQ, et al. Expression of the SRY-related HMG box protein SOX2 in human gastric carcinoma. Int J Oncol. 2004;24(2):257–63.

    CAS  PubMed  Google Scholar 

  60. Matsuoka J, Yashiro M, Sakurai K, et al. Role of the stemness factors sox2, oct3/4, and nanog in gastric carcinoma. J Surg Res. 2012;174(1):130–5.

    Article  CAS  PubMed  Google Scholar 

  61. Hutz K, Mejias-Luque R, Farsakova K, et al. The stem cell factor SOX2 regulates the tumorigenic potential in human gastric cancer cells. Carcinogenesis. 2014;35(4):942–50.

    Article  PubMed  CAS  Google Scholar 

  62. Otsubo T, Akiyama Y, Yanagihara K, et al. SOX2 is frequently downregulated in gastric cancers and inhibits cell growth through cell-cycle arrest and apoptosis. Br J Cancer. 2008;98(4):824–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Giannakis M, Stappenbeck TS, Mills JC, et al. Molecular properties of adult mouse gastric and intestinal epithelial progenitors in their niches. J Biol Chem. 2006;281(16):11292–300.

    Article  CAS  PubMed  Google Scholar 

  64. Okumura T, Ericksen RE, Takaishi S, et al. K-ras mutation targeted to gastric tissue progenitor cells results in chronic inflammation, an altered microenvironment, and progression to intraepithelial neoplasia. Cancer Res. 2010;70(21):8435–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bessede E, Staedel C, Acuna Amador LA, et al. Helicobacter pylori generates cells with cancer stem cell properties via epithelial-mesenchymal transition-like changes. Oncogene. 2014;33(32):4123–31.

    Article  CAS  PubMed  Google Scholar 

  66. Houghton J, Stoicov C, Nomura S, et al. Gastric cancer originating from bone marrow-derived cells. Science. 2004;306(5701):1568–71.

    Article  CAS  PubMed  Google Scholar 

  67. Okumura T, Wang SS, Takaishi S, et al. Identification of a bone marrow-derived mesenchymal progenitor cell subset that can contribute to the gastric epithelium. Lab Invest. 2009;89(12):1410–22.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Varon C, Dubus P, Mazurier F, et al. Helicobacter pylori infection recruits bone marrow-derived cells that participate in gastric preneoplasia in mice. Gastroenterology. 2012;142(2):281–91.

    Article  PubMed  Google Scholar 

  69. Bessede E, Dubus P, Megraud F, et al. Helicobacter pylori infection and stem cells at the origin of gastric cancer. Oncogene. 2015;34(20):2547–55.

    Article  CAS  PubMed  Google Scholar 

  70. Ponta H, Sherman L, Herrlich PA. CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol. 2003;4(1):33–45.

    Article  CAS  PubMed  Google Scholar 

  71. Olsson E, Honeth G, Bendahl PO, et al. CD44 isoforms are heterogeneously expressed in breast cancer and correlate with tumor subtypes and cancer stem cell markers. BMC Cancer. 2011;11:418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ishimoto T, Nagano O, Yae T, et al. CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(−) and thereby promotes tumor growth. Cancer Cell. 2011;19(3):387–400.

    Article  CAS  PubMed  Google Scholar 

  73. Rocco A, Liguori E, Pirozzi G, et al. CD133 and CD44 cell surface markers do not identify cancer stem cells in primary human gastric tumors. J Cell Physiol. 2012;227(6):2686–93.

    Article  CAS  PubMed  Google Scholar 

  74. Fukamachi H, Seol HS, Shimada S, et al. CD49f(high) cells retain sphere-forming and tumor-initiating activities in human gastric tumors. PLoS One. 2013;8(8):e72438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Han ME, Jeon TY, Hwang SH, et al. Cancer spheres from gastric cancer patients provide an ideal model system for cancer stem cell research. Cell Mol Life Sci. 2011;68(21):3589–605.

    Article  CAS  PubMed  Google Scholar 

  76. Lau WM, Teng E, Chong HS, et al. CD44v8-10 is a cancer-specific marker for gastric cancer stem cells. Cancer Res. 2014;74(9):2630–41.

    Article  CAS  PubMed  Google Scholar 

  77. Chen T, Yang K, Yu J, et al. Identification and expansion of cancer stem cells in tumor tissues and peripheral blood derived from gastric adenocarcinoma patients. Cell Res. 2012;22(1):248–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang C, Li C, He F, et al. Identification of CD44+ CD24+ gastric cancer stem cells. J Cancer Res Clin. 2011;137(11):1679–86.

    Article  CAS  Google Scholar 

  79. Yin AH, Miraglia S, Zanjani ED, et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood. 1997;90(12):5002–12.

    CAS  PubMed  Google Scholar 

  80. Mizrak D, Brittan M, Alison M. CD133: molecule of the moment. J Pathol. 2008;214(1):3–9.

    Article  CAS  PubMed  Google Scholar 

  81. Irollo E, Pirozzi G. CD133: to be or not to be, is this the real question? Am J Transl Res. 2013;5(6):563–81.

    PubMed  PubMed Central  Google Scholar 

  82. Kemper K, Sprick MR, de Bree M, et al. The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation. Cancer Res. 2010;70(2):719–29.

    Article  CAS  PubMed  Google Scholar 

  83. Wakamatsu Y, Sakamoto N, Oo HZ, et al. Expression of cancer stem cell markers ALDH1, CD44 and CD133 in primary tumor and lymph node metastasis of gastric cancer. Pathol Int. 2012;62(2):112–9.

    Article  PubMed  Google Scholar 

  84. Muzio G, Maggiora M, Paiuzzi E, et al. Aldehyde dehydrogenases and cell proliferation. Free Radic Biol Med. 2012;52(4):735–46.

    Article  CAS  PubMed  Google Scholar 

  85. Nishikawa S, Konno M, Hamabe A, et al. Aldehyde dehydrogenase high gastric cancer stem cells are resistant to chemotherapy. Int J Oncol. 2013;42(4):1437–42.

    CAS  PubMed  Google Scholar 

  86. Katsuno Y, Ehata S, Yashiro M, et al. Coordinated expression of REG4 and aldehyde dehydrogenase 1 regulating tumourigenic capacity of diffuse-type gastric carcinoma-initiating cells is inhibited by TGF-beta. J Pathol. 2012;228(3):391–404.

    Article  CAS  PubMed  Google Scholar 

  87. Fujikuni N, Yamamoto H, Tanabe K, et al. Hypoxia-mediated CD24 expression is correlated with gastric cancer aggressiveness by promoting cell migration and invasion. Cancer Sci. 2014;105(11):1411–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chou YY, Jeng YM, Lee TT, et al. Cytoplasmic CD24 expression is a novel prognostic factor in diffuse-type gastric adenocarcinoma. Ann Surg Oncol. 2007;14(10):2748–58.

    Article  PubMed  Google Scholar 

  89. Imano M, Itoh T, Satou T, et al. High expression of epithelial cellular adhesion molecule in peritoneal metastasis of gastric cancer. Target Oncol. 2013;8(4):231–5.

    Article  PubMed  Google Scholar 

  90. Wenqi D, Li W, Shanshan C, et al. EpCAM is overexpressed in gastric cancer and its downregulation suppresses proliferation of gastric cancer. J Cancer Res Clin Oncol. 2009;135(9):1277–85.

    Article  PubMed  CAS  Google Scholar 

  91. Schildberg FA, Wojtalla A, Siegmund SV, et al. Murine hepatic stellate cells veto CD8 T cell activation by a CD54-dependent mechanism. Hepatology. 2011;54(1):262–72.

    Article  CAS  PubMed  Google Scholar 

  92. Yashiro M, Sunami T, Hirakawa K. CD54 expression is predictive for lymphatic spread in human gastric carcinoma. Dig Dis Sci. 2005;50(12):2224–30.

    Article  CAS  PubMed  Google Scholar 

  93. Jiang J, Zhang Y, Chuai S, et al. Trastuzumab (herceptin) targets gastric cancer stem cells characterized by CD90 phenotype. Oncogene. 2012;31(6):671–82.

    Article  CAS  PubMed  Google Scholar 

  94. Ohkuma M, Haraguchi N, Ishii H, et al. Absence of CD71 transferrin receptor characterizes human gastric adenosquamous carcinoma stem cells. Ann Surg Oncol. 2012;19(4):1357–64.

    Article  PubMed  Google Scholar 

  95. Lin S, Qi W, Han K, et al. Prognostic value of SOX2 in digestive tumors: a meta-analysis. Hepatol Gastroenterol. 2014;61(133):1274–8.

    Google Scholar 

  96. Li N, Deng W, Ma J, et al. Prognostic evaluation of Nanog, Oct4, Sox2, PCNA, Ki67 and E-cadherin expression in gastric cancer. Med Oncol. 2015;32(1):433.

    Article  PubMed  CAS  Google Scholar 

  97. Kong D, Su G, Zha L, et al. Coexpression of HMGA2 and Oct4 predicts an unfavorable prognosis in human gastric cancer. Med Oncol. 2014;31(8):130.

    Article  PubMed  CAS  Google Scholar 

  98. Wang T, Ong CW, Shi J, et al. Sequential expression of putative stem cell markers in gastric carcinogenesis. Br J Cancer. 2011;105(5):658–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wang W, Dong LP, Zhang N, et al. Role of cancer stem cell marker CD44 in gastric cancer: a meta-analysis. Int J Clin Exp Med. 2014;7(12):5059–66.

    PubMed  PubMed Central  Google Scholar 

  100. Liu YJ, Yan PS, Li J, et al. Expression and significance of CD44 s, CD44v6, and nm23 mRNA in human cancer. World J Gastroenterol. 2005;11(42):6601–6.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Kim JY, Bae BN, Kim KS, et al. Osteopontin, CD44, and NFkappaB expression in gastric adenocarcinoma. Cancer Res Treat. 2009;41(1):29–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wen L, Chen XZ, Yang K, et al. Prognostic value of cancer stem cell marker CD133 expression in gastric cancer: a systematic review. PLoS One. 2013;8(3):e59154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Xia P, Song CL, Liu JF, et al. Prognostic value of circulating CD133(+) cells in patients with gastric cancer. Cell Prolif. 2015;48(3):311–7.

    Article  CAS  PubMed  Google Scholar 

  104. Yoon C, do Park J, Schmidt B, et al. CD44 expression denotes a subpopulation of gastric cancer cells in which Hedgehog signaling promotes chemotherapy resistance. Clin Cancer Res. 2014;20(15):3974–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Xu ZY, Tang JN, Xie HX, et al. 5-Fluorouracil chemotherapy of gastric cancer generates residual cells with properties of cancer stem cells. Int J Biol Sci. 2015;11(3):284–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Du YR, Chen Y, Gao Y, et al. Effects and mechanisms of anti-CD44 monoclonal antibody A3D8 on proliferation and apoptosis of sphere-forming cells with stemness from human ovarian cancer. Int J Gynecol Cancer. 2013;23(8):1367–75.

    Article  PubMed  Google Scholar 

  107. Alshaer W, Hillaireau H, Vergnaud J, et al. Functionalizing liposomes with anti-CD44 Aptamer for selective targeting of cancer cells. Bioconjug Chem. 2015;26(7):1307–13.

    Article  CAS  PubMed  Google Scholar 

  108. Wang L, Su W, Liu Z, et al. CD44 antibody-targeted liposomal nanoparticles for molecular imaging and therapy of hepatocellular carcinoma. Biomaterials. 2012;33(20):5107–14.

    Article  CAS  PubMed  Google Scholar 

  109. Noh I, Kim HO, Choi J, et al. Co-delivery of paclitaxel and gemcitabine via CD44-targeting nanocarriers as a prodrug with synergistic antitumor activity against human biliary cancer. Biomaterials. 2015;53:763–74.

    Article  CAS  PubMed  Google Scholar 

  110. Yao HJ, Zhang YG, Sun L, et al. The effect of hyaluronic acid functionalized carbon nanotubes loaded with salinomycin on gastric cancer stem cells. Biomaterials. 2014;35(33):9208–23.

    Article  CAS  PubMed  Google Scholar 

  111. Serafino A, Zonfrillo M, Andreola F, et al. CD44-targeting for antitumor drug delivery: a new SN-38-hyaluronan bioconjugate for locoregional treatment of peritoneal carcinomatosis. Curr Cancer Drug Targets. 2011;11(5):572–85.

    Article  CAS  PubMed  Google Scholar 

  112. Tanaka Y, Makiyama Y, Mitsui Y. Anti-CD44 monoclonal antibody (IM7) induces murine systemic shock mediated by platelet activating factor. J Autoimmun. 2002;18(1):9–15.

    Article  PubMed  Google Scholar 

  113. Vugts DJ, Heuveling DA, Stigter-van Walsum M, et al. Preclinical evaluation of 89Zr-labeled anti-CD44 monoclonal antibody RG7356 in mice and cynomolgus monkeys: prelude to Phase 1 clinical studies. MAbs. 2014;6(2):567–75.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Swaminathan SK, Roger E, Toti U, et al. CD133-targeted paclitaxel delivery inhibits local tumor recurrence in a mouse model of breast cancer. J Control Rel. 2013;171(3):280–7.

    Article  CAS  Google Scholar 

  115. Skubitz AP, Taras EP, Boylan KL, et al. Targeting CD133 in an in vivo ovarian cancer model reduces ovarian cancer progression. Gynecol Oncol. 2013;130(3):579–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Smith LM, Nesterova A, Ryan MC, et al. CD133/prominin-1 is a potential therapeutic target for antibody-drug conjugates in hepatocellular and gastric cancers. Br J Cancer. 2008;99(1):100–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ammons WS, Bauer RJ, Horwitz AH, et al. In vitro and in vivo pharmacology and pharmacokinetics of a human engineered monoclonal antibody to epithelial cell adhesion molecule. Neoplasia. 2003;5(2):146–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Schmidt M, Ruttinger D, Sebastian M, et al. Phase IB study of the EpCAM antibody adecatumumab combined with docetaxel in patients with EpCAM-positive relapsed or refractory advanced-stage breast cancer. Ann Oncol. 2012;23(9):2306–13.

    Article  CAS  PubMed  Google Scholar 

  119. Paik S, Kim C, Wolmark N. HER2 status and benefit from adjuvant trastuzumab in breast cancer. N Engl J Med. 2008;358(13):1409–11.

    Article  CAS  PubMed  Google Scholar 

  120. Wu WK, Cho CH, Lee CW, et al. Dysregulation of cellular signaling in gastric cancer. Cancer Lett. 2010;295(2):144–53.

    Article  CAS  PubMed  Google Scholar 

  121. Kanwar SS, Yu Y, Nautiyal J, et al. The Wnt/beta-catenin pathway regulates growth and maintenance of colonospheres. Mol Cancer. 2010;9:212.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Takahashi-Yanaga F, Kahn M. Targeting Wnt signaling: can we safely eradicate cancer stem cells? Clin Cancer Res. 2010;16(12):3153–62.

    Article  CAS  PubMed  Google Scholar 

  123. Cai C, Zhu X. The Wnt/beta-catenin pathway regulates self-renewal of cancer stem-like cells in human gastric cancer. Mol Med Rep. 2012;5(5):1191–6.

    CAS  PubMed  Google Scholar 

  124. Mao J, Fan S, Ma W, et al. Roles of Wnt/beta-catenin signaling in the gastric cancer stem cells proliferation and salinomycin treatment. Cell Death Dis. 2014;5:e1039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wang B, Liu J, Ma LN, et al. Chimeric 5/35 adenovirus-mediated Dickkopf-1 overexpression suppressed tumorigenicity of CD44(+) gastric cancer cells via attenuating Wnt signaling. J Gastroenterol. 2013;48(7):798–808.

    Article  CAS  PubMed  Google Scholar 

  126. Berman DM, Karhadkar SS, Maitra A, et al. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature. 2003;425(6960):846–51.

    Article  CAS  PubMed  Google Scholar 

  127. Song Z, Yue W, Wei B, et al. Sonic hedgehog pathway is essential for maintenance of cancer stem-like cells in human gastric cancer. PLoS One. 2011;6(3):e17687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kim TH, Shivdasani RA. Notch signaling in stomach epithelial stem cell homeostasis. J Exp Med. 2011;208(4):677–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Yeh TS, Wu CW, Hsu KW, et al. The activated Notch1 signal pathway is associated with gastric cancer progression through cyclooxygenase-2. Cancer Res. 2009;69(12):5039–48.

    Article  CAS  PubMed  Google Scholar 

  130. Brzozowa M, Mielanczyk L, Michalski M, et al. Role of Notch signaling pathway in gastric cancer pathogenesis. Contemp Oncol. 2013;17(1):1–5.

    CAS  Google Scholar 

  131. Purow B. Notch inhibition as a promising new approach to cancer therapy. Adv Exp Med Biol. 2012;727:305–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Botchkina G. Colon cancer stem cells–from basic to clinical application. Cancer Lett. 2013;338(1):127–40.

    Article  CAS  PubMed  Google Scholar 

  133. Zhan HX, Xu JW, Wu D, et al. Pancreatic cancer stem cells: new insight into a stubborn disease. Cancer Lett. 2015;357(2):429–37.

    Article  CAS  PubMed  Google Scholar 

  134. Carrasco E, Alvarez PJ, Prados J, et al. Cancer stem cells and their implication in breast cancer. Eur J Clin Invest. 2014;44(7):678–87.

    Article  CAS  PubMed  Google Scholar 

  135. Jackson M, Hassiotou F, Nowak A. Glioblastoma stem-like cells: at the root of tumor recurrence and a therapeutic target. Carcinogenesis. 2015;36(2):177–85.

    Article  PubMed  Google Scholar 

  136. Lundin A, Driscoll B. Lung cancer stem cells: progress and prospects. Cancer Lett. 2013;338(1):89–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lang D, Mascarenhas JB, Shea CR. Melanocytes, melanocyte stem cells, and melanoma stem cells. Clin Dermatol. 2013;31(2):166–78.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Sharpe B, Beresford M, Bowen R, et al. Searching for prostate cancer stem cells: markers and methods. Stem Cell Rev. 2013;9(5):721–30.

    Article  CAS  PubMed  Google Scholar 

  139. Fukamachi H, Shimada S, Ito K, et al. CD133 is a marker of gland-forming cells in gastric tumors and Sox17 is involved in its regulation. Cancer Sci. 2011;102(7):1313–21.

    Article  CAS  PubMed  Google Scholar 

  140. Zhu Y, Yu J, Wang S, et al. Overexpression of CD133 enhances chemoresistance to 5-fluorouracil by activating the PI3K/Akt/p70S6K pathway in gastric cancer cells. Oncol Rep. 2014;32(6):2437–44.

    CAS  PubMed  Google Scholar 

  141. Zhi QM, Chen XH, Ji J, et al. Salinomycin can effectively kill ALDH(high) stem-like cells on gastric cancer. Biomed Pharmacother. 2011;65(7):509–15.

    Article  CAS  PubMed  Google Scholar 

  142. Yu D, Shin HS, Choi G, et al. Proteomic analysis of CD44(+) and CD44(−) gastric cancer cells. Mol Cell Biochem. 2014;396(1–2):213–20.

    Article  CAS  PubMed  Google Scholar 

  143. Hong RL, Lee WJ, Shun CT, et al. Expression of CD44 and its clinical implication in diffuse-type and intestinal-type gastric adenocarcinomas. Oncology. 1995;52(4):334–9.

    Article  CAS  PubMed  Google Scholar 

  144. Ghaffarzadehgan K, Jafarzadeh M, Raziee HR, et al. Expression of cell adhesion molecule CD44 in gastric adenocarcinoma and its prognostic importance. World J Gastroenterol. 2008;14(41):6376–81.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Nosrati A, Naghshvar F, Khanari S. Cancer Stem Cell Markers CD44, CD133 in Primary Gastric Adenocarcinoma. Int J Mol Cell Med. 2014;3(4):279–86.

    PubMed  PubMed Central  Google Scholar 

  146. Lee HH, Seo KJ, An CH, et al. CD133 expression is correlated with chemoresistance and early recurrence of gastric cancer. J Surg Oncol. 2012;106(8):999–1004.

    Article  CAS  PubMed  Google Scholar 

  147. Yu JW, Zhang P, Wu JG, et al. Expressions and clinical significances of CD133 protein and CD133 mRNA in primary lesion of gastric adenocacinoma. J Exp Clin Cancer Res. 2010;29:141.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Zhao P, Li Y, Lu Y. Aberrant expression of CD133 protein correlates with Ki-67 expression and is a prognostic marker in gastric adenocarcinoma. BMC Cancer. 2010;10:218.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Hashimoto K, Aoyagi K, Isobe T, et al. Expression of CD133 in the cytoplasm is associated with cancer progression and poor prognosis in gastric cancer. Gastric Cancer. 2014;17(1):97–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Jiang Y, He Y, Li H, et al. Expressions of putative cancer stem cell markers ABCB1, ABCG2, and CD133 are correlated with the degree of differentiation of gastric cancer. Gastric Cancer. 2012;15(4):440–50.

    Article  CAS  PubMed  Google Scholar 

  151. Muller W, Schneiders A, Heider KH, et al. Expression and prognostic value of the CD44 splicing variants v5 and v6 in gastric cancer. J Pathol. 1997;183(2):222–7.

    Article  CAS  PubMed  Google Scholar 

  152. Yamaguchi A, Goi T, Yu J, et al. Expression of CD44v6 in advanced gastric cancer and its relationship to hematogenous metastasis and long-term prognosis. J Surg Oncol. 2002;79(4):230–5.

    Article  CAS  PubMed  Google Scholar 

  153. Okayama H, Kumamoto K, Saitou K, et al. CD44v6, MMP-7 and nuclear Cdx2 are significant biomarkers for prediction of lymph node metastasis in primary gastric cancer. Oncol Rep. 2009;22(4):745–55.

    PubMed  Google Scholar 

  154. Xin Y, Grace A, Gallagher MM, et al. CD44V6 in gastric carcinoma: a marker of tumor progression. Appl Immunohistochem Mol Morphol. 2001;9(2):138–42.

    CAS  PubMed  Google Scholar 

  155. Chen JQ, Zhan WH, He YL, et al. Expression of heparanase gene, CD44v6, MMP-7 and nm23 protein and their relationship with the invasion and metastasis of gastric carcinomas. World J Gastroenterol. 2004;10(6):776–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Kurozumi K, Nishida T, Nakao K, et al. Expression of CD44 variant 6 and lymphatic invasion: importance to lymph node metastasis in gastric cancer. World J Surg. 1998;22(8):853–7 (discussion 7-8).

    Article  CAS  PubMed  Google Scholar 

  157. Yasui W, Kudo Y, Naka K, et al. Expression of CD44 containing variant exon 9 (CD44v9) in gastric adenomas and adenocarcinomas: relation to the proliferation and progression. Int J Oncol. 1998;12(6):1253–8.

    CAS  PubMed  Google Scholar 

  158. Go SI, Ko GH, Lee WS, et al. CD44 variant 9 serves as a poor prognostic marker in early gastric cancer, but not in advanced gastric cancer. Can Res Treat. 2015. doi:10.4143/crt.2014.227.

    Google Scholar 

  159. Hirata K, Suzuki H, Imaeda H, et al. CD44 variant 9 expression in primary early gastric cancer as a predictive marker for recurrence. Br J Cancer. 2013;109(2):379–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Yong CS, Ou Yang CM, Chou YH, et al. CD44/CD24 expression in recurrent gastric cancer: a retrospective analysis. BMC Gstroenterol. 2012;12:95.

    Article  Google Scholar 

  161. Cao L, Hu X, Zhang J, Liang P, Zhang Y. CD44(+) CD324(−) expression and prognosis in gastric cancer patients. J Surg Oncol. 2014;110(6):727–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Brungs.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

Funding sources include the Cancer Institute New South Wales for the CONCERT-Translational Cancer Research Centre and Illawarra Health and Medical Research Institute, University of Wollongong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 99 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brungs, D., Aghmesheh, M., Vine, K.L. et al. Gastric cancer stem cells: evidence, potential markers, and clinical implications. J Gastroenterol 51, 313–326 (2016). https://doi.org/10.1007/s00535-015-1125-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-015-1125-5

Keywords

Navigation