Journal of Gastroenterology

, Volume 51, Issue 4, pp 313–326 | Cite as

Gastric cancer stem cells: evidence, potential markers, and clinical implications

  • Daniel Brungs
  • Morteza Aghmesheh
  • Kara L. Vine
  • Therese M. Becker
  • Martin G. Carolan
  • Marie Ranson
Review

Abstract

Gastric cancer is a significant global health problem. It is the fifth most common cancer and third leading cause of cancer-related death worldwide (Torre et al. in CA Cancer J Clin 65(2):87–108, 2015). Despite advances in treatment, overall prognosis remains poor, due to tumour relapse and metastasis. There is an urgent need for novel therapeutic approaches to improve clinical outcomes in gastric cancer. The cancer stem cell (CSC) model has been proposed to explain the high rate of relapse and subsequent resistance of cancer to current systemic treatments (Vermeulen et al. in Lancet Oncol 13(2):e83–e89, 2012). CSCs have been identified in many solid malignancies, including gastric cancer, and have significant clinical implications, as targeting the CSC population may be essential in preventing the recurrence and spread of a tumour (Dewi et al. in J Gastroenterol 46(10):1145–1157, 2011). This review seeks to summarise the current evidence for CSC in gastric cancer, with an emphasis on candidate CSC markers, clinical implications, and potential therapeutic approaches.

Keywords

Stomach neoplasms Gastric cancer Cancer stem cells CD44 CD44v CD133 ALDH1 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

Funding sources include the Cancer Institute New South Wales for the CONCERT-Translational Cancer Research Centre and Illawarra Health and Medical Research Institute, University of Wollongong.

Supplementary material

535_2015_1125_MOESM1_ESM.docx (99 kb)
Supplementary material 1 (DOCX 99 kb)

References

  1. 1.
    Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.PubMedCrossRefGoogle Scholar
  2. 2.
    Vermeulen L, de Sousa e Melo F, Richel DJ, et al. The developing cancer stem-cell model: clinical challenges and opportunities. Lancet Oncol. 2012;13(2):e83–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Dewi DL, Ishii H, Kano Y, et al. Cancer stem cell theory in gastrointestinal malignancies: recent progress and upcoming challenges. J Gastroenterol. 2011;46(10):1145–57.PubMedCrossRefGoogle Scholar
  4. 4.
    Ding L, Raphael BJ, Chen F, et al. Advances for studying clonal evolution in cancer. Cancer Lett. 2013;340(2):212–9.PubMedCrossRefGoogle Scholar
  5. 5.
    O’Connor ML, Xiang D, Shigdar S, et al. Cancer stem cells: a contentious hypothesis now moving forward. Cancer Lett. 2014;344(2):180–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–11.PubMedCrossRefGoogle Scholar
  7. 7.
    Vermeulen L, De Sousa EMF, van der Heijden M, et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol. 2010;12(5):468–76.PubMedCrossRefGoogle Scholar
  8. 8.
    Liu S, Ginestier C, Ou SJ, et al. Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res. 2011;71(2):614–24.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Notta F, Mullighan CG, Wang JC, et al. Evolution of human BCRABL1 lymphoblastic leukaemia-initiating cells. Nature. 2011;469(7330):362–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Shackleton M, Quintana E, Fearon ER, et al. Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell. 2009;138(5):822–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Takaishi S, Okumura T, Tu S, et al. Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells. 2009;27(5):1006–20.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Liu J, Ma L, Xu J, et al. Spheroid body-forming cells in the human gastric cancer cell line MKN-45 possess cancer stem cell properties. Int J Oncol. 2013;42(2):453–9.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Xu G, Shen J, Ou Yang X, et al. Cancer stem cells: the ‘heartbeat’ of gastric cancer. J Gastroenterol. 2013;48(7):781–97.PubMedCrossRefGoogle Scholar
  14. 14.
    Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. PNAS. 2003;100(7):3983–8.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Collins AT, Berry PA, Hyde C, et al. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005;65(23):10946–51.PubMedCrossRefGoogle Scholar
  17. 17.
    Hermann PC, Huber SL, Herrler T, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007;1(3):313–23.PubMedCrossRefGoogle Scholar
  18. 18.
    Li C, Heidt DG, Dalerba P, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67(3):1030–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Fang D, Nguyen TK, Leishear K, et al. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res. 2005;65(20):9328–37.PubMedCrossRefGoogle Scholar
  20. 20.
    O’Brien CA, Pollett A, Gallinger S, et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445(7123):106–10.PubMedCrossRefGoogle Scholar
  21. 21.
    Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445(7123):111–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. Nature. 2004;432(7015):396–401.PubMedCrossRefGoogle Scholar
  23. 23.
    Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63(18):5821–8.PubMedGoogle Scholar
  24. 24.
    Ma S, Chan KW, Hu L, et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology. 2007;132(7):2542–56.PubMedCrossRefGoogle Scholar
  25. 25.
    Chen J, Li Y, Yu TS, et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature. 2012;488(7412):522–6.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Clarke MF, Dick JE, Dirks PB, et al. Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 2006;66(19):9339–44.PubMedCrossRefGoogle Scholar
  27. 27.
    Takaishi S, Okumura T, Wang TC. Gastric cancer stem cells. J Clin Oncol. 2008;26(17):2876–82.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Sampieri K, Fodde R. Cancer stem cells and metastasis. Sem Can Biol. 2012;22(3):187–93.CrossRefGoogle Scholar
  29. 29.
    Pang R, Law WL, Chu AC, et al. A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer. Cell Stem Cell. 2010;6(6):603–15.PubMedCrossRefGoogle Scholar
  30. 30.
    Croker AK, Goodale D, Chu J, et al. High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability. J Cell Mol Med. 2009;13(8b):2236–52.PubMedCrossRefGoogle Scholar
  31. 31.
    Dieter SM, Ball CR, Hoffmann CM, et al. Distinct types of tumor-initiating cells form human colon cancer tumors and metastases. Cell Stem Cell. 2011;9(4):357–65.PubMedCrossRefGoogle Scholar
  32. 32.
    Mayer B, Jauch KW, Gunthert U, et al. De-novo expression of CD44 and survival in gastric cancer. Lancet. 1993;342(8878):1019–22.PubMedCrossRefGoogle Scholar
  33. 33.
    Chen S, Hou JH, Feng XY, et al. Clinicopathologic significance of putative stem cell marker, CD44 and CD133, in human gastric carcinoma. J Surg Oncol. 2013;107(8):799–806.PubMedCrossRefGoogle Scholar
  34. 34.
    Meng F, Wu G. The rejuvenated scenario of epithelial-mesenchymal transition (EMT) and cancer metastasis. Cancer Metastasis Rev. 2012;31(3–4):455–67.PubMedCrossRefGoogle Scholar
  35. 35.
    Gupta PB, Chaffer CL, Weinberg RA. Cancer stem cells: mirage or reality? Nat Med. 2009;15(9):1010–2.PubMedCrossRefGoogle Scholar
  36. 36.
    Mani SA, Guo W, Liao MJ, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):704–15.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Morel AP, Lievre M, Thomas C, et al. Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One. 2008;3(8):e2888.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Tinhofer I, Saki M, Niehr F, et al. Cancer stem cell characteristics of circulating tumor cells. Int J Radiat Biol. 2014;90(8):622–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Li M, Zhang B, Zhang Z, et al. Stem cell-like circulating tumor cells indicate poor prognosis in gastric cancer. BioMed Res Int. 2014;2014:981261.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Ryu HS, do Park J, Kim HH, et al. Combination of epithelial-mesenchymal transition and cancer stem cell-like phenotypes has independent prognostic value in gastric cancer. Hum Pathol. 2012;43(4):520–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Xue Z, Yan H, Li J, et al. Identification of cancer stem cells in vincristine preconditioned SGC7901 gastric cancer cell line. J Cell Biochem. 2012;113(1):302–12.PubMedCrossRefGoogle Scholar
  42. 42.
    Kelly PN, Dakic A, Adams JM, et al. Tumor growth need not be driven by rare cancer stem cells. Science. 2007;317(5836):337.PubMedCrossRefGoogle Scholar
  43. 43.
    Marx J. Molecular biology. Cancer’s perpetual source? Science. 2007;317(5841):1029–31.PubMedCrossRefGoogle Scholar
  44. 44.
    Yang L, Ping YF, Yu X, et al. Gastric cancer stem-like cells possess higher capability of invasion and metastasis in association with a mesenchymal transition phenotype. Cancer Lett. 2011;310(1):46–52.PubMedGoogle Scholar
  45. 45.
    Zhou S, Schuetz JD, Bunting KD, et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med. 2001;7(9):1028–34.PubMedCrossRefGoogle Scholar
  46. 46.
    Golebiewska A, Brons NH, Bjerkvig R, et al. Critical appraisal of the side population assay in stem cell and cancer stem cell research. Cell Stem Cell. 2011;8(2):136–47.PubMedCrossRefGoogle Scholar
  47. 47.
    Zhang H, Xi H, Cai A, et al. Not all side population cells contain cancer stem-like cells in human gastric cancer cell lines. Dig Dis Sci. 2013;58(1):132–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Nishii T, Yashiro M, Shinto O, et al. Cancer stem cell-like SP cells have a high adhesion ability to the peritoneum in gastric carcinoma. Cancer Sci. 2009;100(8):1397–402.PubMedCrossRefGoogle Scholar
  49. 49.
    Fukuda K, Saikawa Y, Ohashi M, et al. Tumor initiating potential of side population cells in human gastric cancer. Int J Oncol. 2009;34(5):1201–7.PubMedGoogle Scholar
  50. 50.
    She JJ, Zhang PG, Wang X, et al. Side population cells isolated from KATO III human gastric cancer cell line have cancer stem cell-like characteristics. World J Gastroenterol. 2012;18(33):4610–7.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Burkert J, Otto WR, Wright NA. Side populations of gastrointestinal cancers are not enriched in stem cells. J Pathol. 2008;214(5):564–73.PubMedCrossRefGoogle Scholar
  52. 52.
    Bjerknes M, Cheng H. Multipotential stem cells in adult mouse gastric epithelium. Am J Physiol Gastrointest Liver Physiol. 2002;283(3):G767–77.PubMedCrossRefGoogle Scholar
  53. 53.
    Wu C, Xie Y, Gao F, et al. Lgr5 expression as stem cell marker in human gastric gland and its relatedness with other putative cancer stem cell markers. Gene. 2013;525(1):18–25.PubMedCrossRefGoogle Scholar
  54. 54.
    Barker N, Huch M, Kujala P, et al. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell. 2010;6(1):25–36.PubMedCrossRefGoogle Scholar
  55. 55.
    Qiao XT, Ziel JW, McKimpson W, et al. Prospective identification of a multilineage progenitor in murine stomach epithelium. Gastroenterology. 2007;133(6):1989–98.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Arnold K, Sarkar A, Yram MA, et al. Sox2(+) adult stem and progenitor cells are important for tissue regeneration and survival of mice. Cell Stem Cell. 2011;9(4):317–29.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Stange DE, Koo BK, Huch M, et al. Differentiated Troy+ chief cells act as reserve stem cells to generate all lineages of the stomach epithelium. Cell. 2013;155(2):357–68.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Wang S, Tie J, Wang R, et al. SOX2, a predictor of survival in gastric cancer, inhibits cell proliferation and metastasis by regulating PTEN. Cancer Lett. 2015;358(2):210–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Li XL, Eishi Y, Bai YQ, et al. Expression of the SRY-related HMG box protein SOX2 in human gastric carcinoma. Int J Oncol. 2004;24(2):257–63.PubMedGoogle Scholar
  60. 60.
    Matsuoka J, Yashiro M, Sakurai K, et al. Role of the stemness factors sox2, oct3/4, and nanog in gastric carcinoma. J Surg Res. 2012;174(1):130–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Hutz K, Mejias-Luque R, Farsakova K, et al. The stem cell factor SOX2 regulates the tumorigenic potential in human gastric cancer cells. Carcinogenesis. 2014;35(4):942–50.PubMedCrossRefGoogle Scholar
  62. 62.
    Otsubo T, Akiyama Y, Yanagihara K, et al. SOX2 is frequently downregulated in gastric cancers and inhibits cell growth through cell-cycle arrest and apoptosis. Br J Cancer. 2008;98(4):824–31.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Giannakis M, Stappenbeck TS, Mills JC, et al. Molecular properties of adult mouse gastric and intestinal epithelial progenitors in their niches. J Biol Chem. 2006;281(16):11292–300.PubMedCrossRefGoogle Scholar
  64. 64.
    Okumura T, Ericksen RE, Takaishi S, et al. K-ras mutation targeted to gastric tissue progenitor cells results in chronic inflammation, an altered microenvironment, and progression to intraepithelial neoplasia. Cancer Res. 2010;70(21):8435–45.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Bessede E, Staedel C, Acuna Amador LA, et al. Helicobacter pylori generates cells with cancer stem cell properties via epithelial-mesenchymal transition-like changes. Oncogene. 2014;33(32):4123–31.PubMedCrossRefGoogle Scholar
  66. 66.
    Houghton J, Stoicov C, Nomura S, et al. Gastric cancer originating from bone marrow-derived cells. Science. 2004;306(5701):1568–71.PubMedCrossRefGoogle Scholar
  67. 67.
    Okumura T, Wang SS, Takaishi S, et al. Identification of a bone marrow-derived mesenchymal progenitor cell subset that can contribute to the gastric epithelium. Lab Invest. 2009;89(12):1410–22.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Varon C, Dubus P, Mazurier F, et al. Helicobacter pylori infection recruits bone marrow-derived cells that participate in gastric preneoplasia in mice. Gastroenterology. 2012;142(2):281–91.PubMedCrossRefGoogle Scholar
  69. 69.
    Bessede E, Dubus P, Megraud F, et al. Helicobacter pylori infection and stem cells at the origin of gastric cancer. Oncogene. 2015;34(20):2547–55.PubMedCrossRefGoogle Scholar
  70. 70.
    Ponta H, Sherman L, Herrlich PA. CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol. 2003;4(1):33–45.PubMedCrossRefGoogle Scholar
  71. 71.
    Olsson E, Honeth G, Bendahl PO, et al. CD44 isoforms are heterogeneously expressed in breast cancer and correlate with tumor subtypes and cancer stem cell markers. BMC Cancer. 2011;11:418.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Ishimoto T, Nagano O, Yae T, et al. CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(−) and thereby promotes tumor growth. Cancer Cell. 2011;19(3):387–400.PubMedCrossRefGoogle Scholar
  73. 73.
    Rocco A, Liguori E, Pirozzi G, et al. CD133 and CD44 cell surface markers do not identify cancer stem cells in primary human gastric tumors. J Cell Physiol. 2012;227(6):2686–93.PubMedCrossRefGoogle Scholar
  74. 74.
    Fukamachi H, Seol HS, Shimada S, et al. CD49f(high) cells retain sphere-forming and tumor-initiating activities in human gastric tumors. PLoS One. 2013;8(8):e72438.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Han ME, Jeon TY, Hwang SH, et al. Cancer spheres from gastric cancer patients provide an ideal model system for cancer stem cell research. Cell Mol Life Sci. 2011;68(21):3589–605.PubMedCrossRefGoogle Scholar
  76. 76.
    Lau WM, Teng E, Chong HS, et al. CD44v8-10 is a cancer-specific marker for gastric cancer stem cells. Cancer Res. 2014;74(9):2630–41.PubMedCrossRefGoogle Scholar
  77. 77.
    Chen T, Yang K, Yu J, et al. Identification and expansion of cancer stem cells in tumor tissues and peripheral blood derived from gastric adenocarcinoma patients. Cell Res. 2012;22(1):248–58.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Zhang C, Li C, He F, et al. Identification of CD44+ CD24+ gastric cancer stem cells. J Cancer Res Clin. 2011;137(11):1679–86.CrossRefGoogle Scholar
  79. 79.
    Yin AH, Miraglia S, Zanjani ED, et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood. 1997;90(12):5002–12.PubMedGoogle Scholar
  80. 80.
    Mizrak D, Brittan M, Alison M. CD133: molecule of the moment. J Pathol. 2008;214(1):3–9.PubMedCrossRefGoogle Scholar
  81. 81.
    Irollo E, Pirozzi G. CD133: to be or not to be, is this the real question? Am J Transl Res. 2013;5(6):563–81.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Kemper K, Sprick MR, de Bree M, et al. The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation. Cancer Res. 2010;70(2):719–29.PubMedCrossRefGoogle Scholar
  83. 83.
    Wakamatsu Y, Sakamoto N, Oo HZ, et al. Expression of cancer stem cell markers ALDH1, CD44 and CD133 in primary tumor and lymph node metastasis of gastric cancer. Pathol Int. 2012;62(2):112–9.PubMedCrossRefGoogle Scholar
  84. 84.
    Muzio G, Maggiora M, Paiuzzi E, et al. Aldehyde dehydrogenases and cell proliferation. Free Radic Biol Med. 2012;52(4):735–46.PubMedCrossRefGoogle Scholar
  85. 85.
    Nishikawa S, Konno M, Hamabe A, et al. Aldehyde dehydrogenase high gastric cancer stem cells are resistant to chemotherapy. Int J Oncol. 2013;42(4):1437–42.PubMedGoogle Scholar
  86. 86.
    Katsuno Y, Ehata S, Yashiro M, et al. Coordinated expression of REG4 and aldehyde dehydrogenase 1 regulating tumourigenic capacity of diffuse-type gastric carcinoma-initiating cells is inhibited by TGF-beta. J Pathol. 2012;228(3):391–404.PubMedCrossRefGoogle Scholar
  87. 87.
    Fujikuni N, Yamamoto H, Tanabe K, et al. Hypoxia-mediated CD24 expression is correlated with gastric cancer aggressiveness by promoting cell migration and invasion. Cancer Sci. 2014;105(11):1411–20.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Chou YY, Jeng YM, Lee TT, et al. Cytoplasmic CD24 expression is a novel prognostic factor in diffuse-type gastric adenocarcinoma. Ann Surg Oncol. 2007;14(10):2748–58.PubMedCrossRefGoogle Scholar
  89. 89.
    Imano M, Itoh T, Satou T, et al. High expression of epithelial cellular adhesion molecule in peritoneal metastasis of gastric cancer. Target Oncol. 2013;8(4):231–5.PubMedCrossRefGoogle Scholar
  90. 90.
    Wenqi D, Li W, Shanshan C, et al. EpCAM is overexpressed in gastric cancer and its downregulation suppresses proliferation of gastric cancer. J Cancer Res Clin Oncol. 2009;135(9):1277–85.PubMedCrossRefGoogle Scholar
  91. 91.
    Schildberg FA, Wojtalla A, Siegmund SV, et al. Murine hepatic stellate cells veto CD8 T cell activation by a CD54-dependent mechanism. Hepatology. 2011;54(1):262–72.PubMedCrossRefGoogle Scholar
  92. 92.
    Yashiro M, Sunami T, Hirakawa K. CD54 expression is predictive for lymphatic spread in human gastric carcinoma. Dig Dis Sci. 2005;50(12):2224–30.PubMedCrossRefGoogle Scholar
  93. 93.
    Jiang J, Zhang Y, Chuai S, et al. Trastuzumab (herceptin) targets gastric cancer stem cells characterized by CD90 phenotype. Oncogene. 2012;31(6):671–82.PubMedCrossRefGoogle Scholar
  94. 94.
    Ohkuma M, Haraguchi N, Ishii H, et al. Absence of CD71 transferrin receptor characterizes human gastric adenosquamous carcinoma stem cells. Ann Surg Oncol. 2012;19(4):1357–64.PubMedCrossRefGoogle Scholar
  95. 95.
    Lin S, Qi W, Han K, et al. Prognostic value of SOX2 in digestive tumors: a meta-analysis. Hepatol Gastroenterol. 2014;61(133):1274–8.Google Scholar
  96. 96.
    Li N, Deng W, Ma J, et al. Prognostic evaluation of Nanog, Oct4, Sox2, PCNA, Ki67 and E-cadherin expression in gastric cancer. Med Oncol. 2015;32(1):433.PubMedCrossRefGoogle Scholar
  97. 97.
    Kong D, Su G, Zha L, et al. Coexpression of HMGA2 and Oct4 predicts an unfavorable prognosis in human gastric cancer. Med Oncol. 2014;31(8):130.PubMedCrossRefGoogle Scholar
  98. 98.
    Wang T, Ong CW, Shi J, et al. Sequential expression of putative stem cell markers in gastric carcinogenesis. Br J Cancer. 2011;105(5):658–65.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Wang W, Dong LP, Zhang N, et al. Role of cancer stem cell marker CD44 in gastric cancer: a meta-analysis. Int J Clin Exp Med. 2014;7(12):5059–66.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Liu YJ, Yan PS, Li J, et al. Expression and significance of CD44 s, CD44v6, and nm23 mRNA in human cancer. World J Gastroenterol. 2005;11(42):6601–6.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Kim JY, Bae BN, Kim KS, et al. Osteopontin, CD44, and NFkappaB expression in gastric adenocarcinoma. Cancer Res Treat. 2009;41(1):29–35.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Wen L, Chen XZ, Yang K, et al. Prognostic value of cancer stem cell marker CD133 expression in gastric cancer: a systematic review. PLoS One. 2013;8(3):e59154.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Xia P, Song CL, Liu JF, et al. Prognostic value of circulating CD133(+) cells in patients with gastric cancer. Cell Prolif. 2015;48(3):311–7.PubMedCrossRefGoogle Scholar
  104. 104.
    Yoon C, do Park J, Schmidt B, et al. CD44 expression denotes a subpopulation of gastric cancer cells in which Hedgehog signaling promotes chemotherapy resistance. Clin Cancer Res. 2014;20(15):3974–88.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Xu ZY, Tang JN, Xie HX, et al. 5-Fluorouracil chemotherapy of gastric cancer generates residual cells with properties of cancer stem cells. Int J Biol Sci. 2015;11(3):284–94.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Du YR, Chen Y, Gao Y, et al. Effects and mechanisms of anti-CD44 monoclonal antibody A3D8 on proliferation and apoptosis of sphere-forming cells with stemness from human ovarian cancer. Int J Gynecol Cancer. 2013;23(8):1367–75.PubMedCrossRefGoogle Scholar
  107. 107.
    Alshaer W, Hillaireau H, Vergnaud J, et al. Functionalizing liposomes with anti-CD44 Aptamer for selective targeting of cancer cells. Bioconjug Chem. 2015;26(7):1307–13.PubMedCrossRefGoogle Scholar
  108. 108.
    Wang L, Su W, Liu Z, et al. CD44 antibody-targeted liposomal nanoparticles for molecular imaging and therapy of hepatocellular carcinoma. Biomaterials. 2012;33(20):5107–14.PubMedCrossRefGoogle Scholar
  109. 109.
    Noh I, Kim HO, Choi J, et al. Co-delivery of paclitaxel and gemcitabine via CD44-targeting nanocarriers as a prodrug with synergistic antitumor activity against human biliary cancer. Biomaterials. 2015;53:763–74.PubMedCrossRefGoogle Scholar
  110. 110.
    Yao HJ, Zhang YG, Sun L, et al. The effect of hyaluronic acid functionalized carbon nanotubes loaded with salinomycin on gastric cancer stem cells. Biomaterials. 2014;35(33):9208–23.PubMedCrossRefGoogle Scholar
  111. 111.
    Serafino A, Zonfrillo M, Andreola F, et al. CD44-targeting for antitumor drug delivery: a new SN-38-hyaluronan bioconjugate for locoregional treatment of peritoneal carcinomatosis. Curr Cancer Drug Targets. 2011;11(5):572–85.PubMedCrossRefGoogle Scholar
  112. 112.
    Tanaka Y, Makiyama Y, Mitsui Y. Anti-CD44 monoclonal antibody (IM7) induces murine systemic shock mediated by platelet activating factor. J Autoimmun. 2002;18(1):9–15.PubMedCrossRefGoogle Scholar
  113. 113.
    Vugts DJ, Heuveling DA, Stigter-van Walsum M, et al. Preclinical evaluation of 89Zr-labeled anti-CD44 monoclonal antibody RG7356 in mice and cynomolgus monkeys: prelude to Phase 1 clinical studies. MAbs. 2014;6(2):567–75.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Swaminathan SK, Roger E, Toti U, et al. CD133-targeted paclitaxel delivery inhibits local tumor recurrence in a mouse model of breast cancer. J Control Rel. 2013;171(3):280–7.CrossRefGoogle Scholar
  115. 115.
    Skubitz AP, Taras EP, Boylan KL, et al. Targeting CD133 in an in vivo ovarian cancer model reduces ovarian cancer progression. Gynecol Oncol. 2013;130(3):579–87.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Smith LM, Nesterova A, Ryan MC, et al. CD133/prominin-1 is a potential therapeutic target for antibody-drug conjugates in hepatocellular and gastric cancers. Br J Cancer. 2008;99(1):100–9.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Ammons WS, Bauer RJ, Horwitz AH, et al. In vitro and in vivo pharmacology and pharmacokinetics of a human engineered monoclonal antibody to epithelial cell adhesion molecule. Neoplasia. 2003;5(2):146–54.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Schmidt M, Ruttinger D, Sebastian M, et al. Phase IB study of the EpCAM antibody adecatumumab combined with docetaxel in patients with EpCAM-positive relapsed or refractory advanced-stage breast cancer. Ann Oncol. 2012;23(9):2306–13.PubMedCrossRefGoogle Scholar
  119. 119.
    Paik S, Kim C, Wolmark N. HER2 status and benefit from adjuvant trastuzumab in breast cancer. N Engl J Med. 2008;358(13):1409–11.PubMedCrossRefGoogle Scholar
  120. 120.
    Wu WK, Cho CH, Lee CW, et al. Dysregulation of cellular signaling in gastric cancer. Cancer Lett. 2010;295(2):144–53.PubMedCrossRefGoogle Scholar
  121. 121.
    Kanwar SS, Yu Y, Nautiyal J, et al. The Wnt/beta-catenin pathway regulates growth and maintenance of colonospheres. Mol Cancer. 2010;9:212.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Takahashi-Yanaga F, Kahn M. Targeting Wnt signaling: can we safely eradicate cancer stem cells? Clin Cancer Res. 2010;16(12):3153–62.PubMedCrossRefGoogle Scholar
  123. 123.
    Cai C, Zhu X. The Wnt/beta-catenin pathway regulates self-renewal of cancer stem-like cells in human gastric cancer. Mol Med Rep. 2012;5(5):1191–6.PubMedGoogle Scholar
  124. 124.
    Mao J, Fan S, Ma W, et al. Roles of Wnt/beta-catenin signaling in the gastric cancer stem cells proliferation and salinomycin treatment. Cell Death Dis. 2014;5:e1039.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Wang B, Liu J, Ma LN, et al. Chimeric 5/35 adenovirus-mediated Dickkopf-1 overexpression suppressed tumorigenicity of CD44(+) gastric cancer cells via attenuating Wnt signaling. J Gastroenterol. 2013;48(7):798–808.PubMedCrossRefGoogle Scholar
  126. 126.
    Berman DM, Karhadkar SS, Maitra A, et al. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature. 2003;425(6960):846–51.PubMedCrossRefGoogle Scholar
  127. 127.
    Song Z, Yue W, Wei B, et al. Sonic hedgehog pathway is essential for maintenance of cancer stem-like cells in human gastric cancer. PLoS One. 2011;6(3):e17687.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Kim TH, Shivdasani RA. Notch signaling in stomach epithelial stem cell homeostasis. J Exp Med. 2011;208(4):677–88.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Yeh TS, Wu CW, Hsu KW, et al. The activated Notch1 signal pathway is associated with gastric cancer progression through cyclooxygenase-2. Cancer Res. 2009;69(12):5039–48.PubMedCrossRefGoogle Scholar
  130. 130.
    Brzozowa M, Mielanczyk L, Michalski M, et al. Role of Notch signaling pathway in gastric cancer pathogenesis. Contemp Oncol. 2013;17(1):1–5.Google Scholar
  131. 131.
    Purow B. Notch inhibition as a promising new approach to cancer therapy. Adv Exp Med Biol. 2012;727:305–19.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Botchkina G. Colon cancer stem cells–from basic to clinical application. Cancer Lett. 2013;338(1):127–40.PubMedCrossRefGoogle Scholar
  133. 133.
    Zhan HX, Xu JW, Wu D, et al. Pancreatic cancer stem cells: new insight into a stubborn disease. Cancer Lett. 2015;357(2):429–37.PubMedCrossRefGoogle Scholar
  134. 134.
    Carrasco E, Alvarez PJ, Prados J, et al. Cancer stem cells and their implication in breast cancer. Eur J Clin Invest. 2014;44(7):678–87.PubMedCrossRefGoogle Scholar
  135. 135.
    Jackson M, Hassiotou F, Nowak A. Glioblastoma stem-like cells: at the root of tumor recurrence and a therapeutic target. Carcinogenesis. 2015;36(2):177–85.PubMedCrossRefGoogle Scholar
  136. 136.
    Lundin A, Driscoll B. Lung cancer stem cells: progress and prospects. Cancer Lett. 2013;338(1):89–93.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Lang D, Mascarenhas JB, Shea CR. Melanocytes, melanocyte stem cells, and melanoma stem cells. Clin Dermatol. 2013;31(2):166–78.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Sharpe B, Beresford M, Bowen R, et al. Searching for prostate cancer stem cells: markers and methods. Stem Cell Rev. 2013;9(5):721–30.PubMedCrossRefGoogle Scholar
  139. 139.
    Fukamachi H, Shimada S, Ito K, et al. CD133 is a marker of gland-forming cells in gastric tumors and Sox17 is involved in its regulation. Cancer Sci. 2011;102(7):1313–21.PubMedCrossRefGoogle Scholar
  140. 140.
    Zhu Y, Yu J, Wang S, et al. Overexpression of CD133 enhances chemoresistance to 5-fluorouracil by activating the PI3K/Akt/p70S6K pathway in gastric cancer cells. Oncol Rep. 2014;32(6):2437–44.PubMedGoogle Scholar
  141. 141.
    Zhi QM, Chen XH, Ji J, et al. Salinomycin can effectively kill ALDH(high) stem-like cells on gastric cancer. Biomed Pharmacother. 2011;65(7):509–15.PubMedCrossRefGoogle Scholar
  142. 142.
    Yu D, Shin HS, Choi G, et al. Proteomic analysis of CD44(+) and CD44(−) gastric cancer cells. Mol Cell Biochem. 2014;396(1–2):213–20.PubMedCrossRefGoogle Scholar
  143. 143.
    Hong RL, Lee WJ, Shun CT, et al. Expression of CD44 and its clinical implication in diffuse-type and intestinal-type gastric adenocarcinomas. Oncology. 1995;52(4):334–9.PubMedCrossRefGoogle Scholar
  144. 144.
    Ghaffarzadehgan K, Jafarzadeh M, Raziee HR, et al. Expression of cell adhesion molecule CD44 in gastric adenocarcinoma and its prognostic importance. World J Gastroenterol. 2008;14(41):6376–81.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Nosrati A, Naghshvar F, Khanari S. Cancer Stem Cell Markers CD44, CD133 in Primary Gastric Adenocarcinoma. Int J Mol Cell Med. 2014;3(4):279–86.PubMedPubMedCentralGoogle Scholar
  146. 146.
    Lee HH, Seo KJ, An CH, et al. CD133 expression is correlated with chemoresistance and early recurrence of gastric cancer. J Surg Oncol. 2012;106(8):999–1004.PubMedCrossRefGoogle Scholar
  147. 147.
    Yu JW, Zhang P, Wu JG, et al. Expressions and clinical significances of CD133 protein and CD133 mRNA in primary lesion of gastric adenocacinoma. J Exp Clin Cancer Res. 2010;29:141.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Zhao P, Li Y, Lu Y. Aberrant expression of CD133 protein correlates with Ki-67 expression and is a prognostic marker in gastric adenocarcinoma. BMC Cancer. 2010;10:218.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Hashimoto K, Aoyagi K, Isobe T, et al. Expression of CD133 in the cytoplasm is associated with cancer progression and poor prognosis in gastric cancer. Gastric Cancer. 2014;17(1):97–106.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Jiang Y, He Y, Li H, et al. Expressions of putative cancer stem cell markers ABCB1, ABCG2, and CD133 are correlated with the degree of differentiation of gastric cancer. Gastric Cancer. 2012;15(4):440–50.PubMedCrossRefGoogle Scholar
  151. 151.
    Muller W, Schneiders A, Heider KH, et al. Expression and prognostic value of the CD44 splicing variants v5 and v6 in gastric cancer. J Pathol. 1997;183(2):222–7.PubMedCrossRefGoogle Scholar
  152. 152.
    Yamaguchi A, Goi T, Yu J, et al. Expression of CD44v6 in advanced gastric cancer and its relationship to hematogenous metastasis and long-term prognosis. J Surg Oncol. 2002;79(4):230–5.PubMedCrossRefGoogle Scholar
  153. 153.
    Okayama H, Kumamoto K, Saitou K, et al. CD44v6, MMP-7 and nuclear Cdx2 are significant biomarkers for prediction of lymph node metastasis in primary gastric cancer. Oncol Rep. 2009;22(4):745–55.PubMedGoogle Scholar
  154. 154.
    Xin Y, Grace A, Gallagher MM, et al. CD44V6 in gastric carcinoma: a marker of tumor progression. Appl Immunohistochem Mol Morphol. 2001;9(2):138–42.PubMedGoogle Scholar
  155. 155.
    Chen JQ, Zhan WH, He YL, et al. Expression of heparanase gene, CD44v6, MMP-7 and nm23 protein and their relationship with the invasion and metastasis of gastric carcinomas. World J Gastroenterol. 2004;10(6):776–82.PubMedPubMedCentralGoogle Scholar
  156. 156.
    Kurozumi K, Nishida T, Nakao K, et al. Expression of CD44 variant 6 and lymphatic invasion: importance to lymph node metastasis in gastric cancer. World J Surg. 1998;22(8):853–7 (discussion 7-8).PubMedCrossRefGoogle Scholar
  157. 157.
    Yasui W, Kudo Y, Naka K, et al. Expression of CD44 containing variant exon 9 (CD44v9) in gastric adenomas and adenocarcinomas: relation to the proliferation and progression. Int J Oncol. 1998;12(6):1253–8.PubMedGoogle Scholar
  158. 158.
    Go SI, Ko GH, Lee WS, et al. CD44 variant 9 serves as a poor prognostic marker in early gastric cancer, but not in advanced gastric cancer. Can Res Treat. 2015. doi: 10.4143/crt.2014.227.Google Scholar
  159. 159.
    Hirata K, Suzuki H, Imaeda H, et al. CD44 variant 9 expression in primary early gastric cancer as a predictive marker for recurrence. Br J Cancer. 2013;109(2):379–86.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Yong CS, Ou Yang CM, Chou YH, et al. CD44/CD24 expression in recurrent gastric cancer: a retrospective analysis. BMC Gstroenterol. 2012;12:95.CrossRefGoogle Scholar
  161. 161.
    Cao L, Hu X, Zhang J, Liang P, Zhang Y. CD44(+) CD324(−) expression and prognosis in gastric cancer patients. J Surg Oncol. 2014;110(6):727–33.PubMedCrossRefGoogle Scholar

Copyright information

© Japanese Society of Gastroenterology 2015

Authors and Affiliations

  • Daniel Brungs
    • 1
    • 2
    • 3
    • 4
    • 5
  • Morteza Aghmesheh
    • 1
    • 3
    • 4
    • 5
  • Kara L. Vine
    • 1
    • 2
    • 4
    • 5
  • Therese M. Becker
    • 4
    • 6
    • 7
    • 5
  • Martin G. Carolan
    • 1
    • 3
    • 4
    • 5
  • Marie Ranson
    • 1
    • 2
    • 4
    • 5
  1. 1.Illawarra Health and Medical Research InstituteUniversity of WollongongWollongongAustralia
  2. 2.School of Biological SciencesUniversity of WollongongWollongongAustralia
  3. 3.Illawarra Cancer CentreWollongong HospitalWollongongAustralia
  4. 4.CONCERT-Translational Cancer Research CentreSydneyAustralia
  5. 5.Ingham Institute for Applied Medical ResearchLiverpool HospitalLiverpoolAustralia
  6. 6.School of MedicineUniversity of Western SydneyLiverpoolAustralia
  7. 7.South Western Medical SchoolUniversity of New South WalesLiverpoolAustralia

Personalised recommendations