Skip to main content

Notch Inhibition as a Promising New Approach to Cancer Therapy

  • Chapter
Notch Signaling in Embryology and Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 727))

Abstract

The Notch pathway powerfully influences stem cell maintenance, development and cell fate and is increasingly recognized for the key roles it plays in cancer. Notch promotes cell survival, angiogenesis and treatment resistance in numerous cancers, making it a promising target for cancer therapy. It also crosstalks with other critical oncogenes, providing a means to affect numerous signaling pathways with one intervention. While the gamma-secretase inhibitors are the only form of Notch inhibitors in clinical trials, other forms of Notch inhibition have been developed or are theoretically feasible. In this chapter we review the rationales for Notch inhibition in cancer and then discuss in detail the various modalities for Notch inhibition, both current and speculative.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gaiano N, Nye JS, Fishell G. Radial glial identity is promoted by Notch1 signaling in the murine forebrain. Neuron 2000; 26:395–404.

    Article  PubMed  CAS  Google Scholar 

  2. Henrique D, Hirsinger E, Adam J et al. Maintenance of neuroepithelial progenitor cells by Delta-Notch signalling in the embryonic chick retina. Curr Biol 1997; 7:661–670.

    Article  PubMed  CAS  Google Scholar 

  3. Kageyama R, Ohtsuka T. The Notch-Hes pathway in mammalian neural development. Cell Res 1999; 9:179–188.

    Article  PubMed  CAS  Google Scholar 

  4. Kumano K, Chiba S, Kunisato A et al. Notch1 but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells. Immunity 2003; 18:699–711.

    Article  PubMed  CAS  Google Scholar 

  5. van Es JH, van Gijn ME, Riccio O et al. Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 2005; 435:959–963.

    Article  PubMed  Google Scholar 

  6. Amsen D, Blander JM, Lee GR et al. Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell 2004; 117:515–526.

    Article  PubMed  CAS  Google Scholar 

  7. Fre S, Huyghe M, Mourikis P et al. Notch signals control the fate of immature progenitor cells in the intestine. Nature 2005; 435:964–968.

    Article  PubMed  CAS  Google Scholar 

  8. Morrison SJ, Perez SE, Qiao Z et al. Transient Notch activation initiates an irreversible switch from neurogenesis to gliogenesis by neural crest stem cells. Cell 2000; 101:499–510.

    Article  PubMed  CAS  Google Scholar 

  9. Ellisen LW, Bird J, West DC et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 1991; 66:649–661.

    Article  PubMed  CAS  Google Scholar 

  10. Purow BW, Haque RM, Noel MW et al. Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation. Cancer Res 2005; 65:2353–2363.

    Article  PubMed  CAS  Google Scholar 

  11. Shih AH, Holland EC. Notch signaling enhances nestin expression in gliomas. Neoplasia 2006; 8:1072–1082.

    Article  PubMed  CAS  Google Scholar 

  12. Weng AP, Ferrando AA, Lee W et al. Activating mutations of NOTCH1 in human T-cell acute lymphoblastic leukemia. Science 2004; 306:269–271.

    Article  PubMed  CAS  Google Scholar 

  13. Jundt F, Anagnostopoulos I, Forster R et al. Activated Notch1 signaling promotes tumor cell proliferation and survival in Hodgkin and anaplastic large cell lymphoma. Blood 2002; 99:3398–3403.

    Article  PubMed  CAS  Google Scholar 

  14. Miele L, Osborne B. Arbiter of differentiation and death: Notch signaling meets apoptosis. J Cell Physiol 1999; 181:393–409.

    Article  PubMed  CAS  Google Scholar 

  15. Shelly LL, Fuchs C, Miele L. Notch-1 inhibits apoptosis in murine erythroleukemia cells and is necessary for differentiation induced by hybrid polar compounds. J Cell Biochem 1999; 73:164–175.

    Article  PubMed  CAS  Google Scholar 

  16. Guo D, Ye J, Dai J et al. Notch-1 regulates Akt signaling pathway and the expression of cell cycle regulatory proteins cyclin D1, CDK2 and p21 in T-ALL cell lines. Leuk Res 2009; 33:678–685.

    Article  PubMed  CAS  Google Scholar 

  17. Joshi I, Minter LM, Telfer J et al. Notch signaling mediates G1/S cell-cycle progression in T-cells via cyclin D3 and its dependent kinases. Blood 2009; 113:1689–1698.

    Article  PubMed  CAS  Google Scholar 

  18. Dontu G, Al-Hajj M, Abdallah WM et al. Stem cells in normal breast development and breast cancer. Cell Prolif 2003; 36 Suppl 1:59–72.

    Article  PubMed  CAS  Google Scholar 

  19. Eyler CE, Rich JN. Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol 2008; 26:2839–2845.

    Article  PubMed  CAS  Google Scholar 

  20. Lee J, Kotliarova S, Kotliarov Y et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 2006; 9:391–403.

    Article  PubMed  CAS  Google Scholar 

  21. Singh SK, Clarke ID, Terasaki M et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003; 63:5821–5828.

    PubMed  CAS  Google Scholar 

  22. Bao S, Wu Q, McLendon RE et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006; 444:756–760.

    Article  PubMed  CAS  Google Scholar 

  23. Liu G, Yuan X, Zeng Z et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 2006; 5:67.

    Article  PubMed  Google Scholar 

  24. Fan X, Khaki L, Zhu TS et al. NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells 28:5–16.

    Google Scholar 

  25. Fan X, Matsui W, Khaki L et al. Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res 2006; 66:7445–7452.

    Article  PubMed  CAS  Google Scholar 

  26. Sikandar SS, Pate KT, Anderson S et al. NOTCH signaling is required for formation and self-renewal of tumor-initiating cells and for repression of secretory cell differentiation in colon cancer. Cancer Res 70:1469–1478.

    Google Scholar 

  27. Perumalsamy LR, Nagala M, Sarin A. Notch-activated signaling cascade interacts with mitochondrial remodeling proteins to regulate cell survival. Proc Natl Acad Sci USA 107:6882–6887.

    Google Scholar 

  28. Efferson CL, Winkelmann CT, Ware C et al. Downregulation of Notch pathway by a gamma-secretase inhibitor attenuates AKT/mammalian target of rapamycin signaling and glucose uptake in an ERBB2 transgenic breast cancer model. Cancer Res 70:2476–2484.

    Google Scholar 

  29. Meurette O, Stylianou S, Rock R et al. Notch activation induces Akt signaling via an autocrine loop to prevent apoptosis in breast epithelial cells. Cancer Res 2009; 69:5015–5022.

    Article  PubMed  CAS  Google Scholar 

  30. Palomero T, Sulis ML, Cortina M et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med 2007; 13:1203–1210.

    Article  PubMed  CAS  Google Scholar 

  31. Fitzgerald K, Harrington A, Leder P. Ras pathway signals are required for notch-mediated oncogenesis. Oncogene 2000; 19:4191–4198.

    Article  PubMed  CAS  Google Scholar 

  32. Weijzen S, Velders MP, Elmishad AG et al. The Notch ligand Jagged-1 is able to induce maturation of monocyte-derived human dendritic cells. J Immunol 2002; 169:4273–4278.

    PubMed  CAS  Google Scholar 

  33. Konishi J, Yi F, Chen X et al. Notch3 cooperates with the EGFR pathway to modulate apoptosis through the induction of bim. Oncogene29, 589–596.

    Google Scholar 

  34. Purow BW, Sundaresan TK, Burdick MJ et al. Notch-1 regulates transcription of the epidermal growth factor receptor through p53. Carcinogenesis 2008; 29, 918–925.

    Article  PubMed  CAS  Google Scholar 

  35. Funahashi Y, Shawber CJ, Vorontchikhina M et al. Notch regulates the angiogenic response via induction of VEGFR-1. J Angiogenes Res2:3.

    Google Scholar 

  36. Yoon K, Nery S, Rutlin ML et al. Fibroblast growth factor receptor signaling promotes radial glial identity and interacts with Notch1 signaling in telencephalic progenitors. J Neurosci 2004; 24:9497–9506.

    Article  PubMed  CAS  Google Scholar 

  37. Wang J, Shelly L, Miele L et al. Human Notch-1 inhibits NF-kappa B activity in the nucleus through a direct interaction involving a novel domain. J Immunol 2001; 167:289–295.

    PubMed  CAS  Google Scholar 

  38. Cheng P, Zlobin A, Volgina V et al. Notch-1 regulates NF-kappaB activity in hemopoietic progenitor cells. J Immunol 2001; 167:458–467.

    Google Scholar 

  39. Oswald F, Liptay S, Adler G et al. NF-kappaB2 is a putative target gene of activated Notch-1 via RBPJkappa. Mol Cell Biol 1998; 18:2077–2088.

    PubMed  CAS  Google Scholar 

  40. Espinosa L, Santos S, Ingles-Esteve J et al. p65-NFkappaB synergizes with Notch to activate transcription by triggering cytoplasmic translocation of the nuclear receptor corepressor N-CoR. J Cell Sci 2002; 115:1295–1303.

    Article  PubMed  CAS  Google Scholar 

  41. Nickoloff BJ, Qin JZ, Chaturvedi V et al. Jagged-1 mediated activation of notch signaling induces complete maturation of human keratinocytes through NF-kappaB and PPARgamma. Cell Death Differ 2002; 9:842–855.

    Article  PubMed  CAS  Google Scholar 

  42. Weng AP, Millholland JM, Yashiro-Ohtani Y et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev 2006; 20:2096–2109.

    Article  PubMed  CAS  Google Scholar 

  43. Gustafsson MV, Zheng X, Pereira T et al. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell 2005; 9:617–628.

    Article  PubMed  CAS  Google Scholar 

  44. Nefedova Y, Sullivan DM, Bolick SC et al. Inhibition of Notch signaling induces apoptosis of myeloma cells and enhances sensitivity to chemotherapy. Blood 2008; 111:2220–2229.

    Article  PubMed  CAS  Google Scholar 

  45. Ishikawa Y, Onoyama I, Nakayama KI et al. Notch-dependent cell cycle arrest and apoptosis in mouse embryonic fibroblasts lacking Fbxw7. Oncogene 2008; 27:6164–6174.

    Article  PubMed  CAS  Google Scholar 

  46. Sang L, Coller HA, Roberts JM. Control of the reversibility of cellular quiescence by the transcriptional repressor HES1. Science 2008; 321:1095–1100.

    Article  PubMed  CAS  Google Scholar 

  47. Gilbert CA, Hermance N, Daou M-C et al. Glioma treatment with temozolomide and Notch inhibition suppresses neurosphere formation and xenograft formation AACR Meeting Abstracts 2010; 2010.

    Google Scholar 

  48. Caiado F, Real C, Carvalho T et al. Notch pathway modulation on bone marrow-derived vascular precursor cells regulates their angiogenic and wound healing potential. PLoS ONE 2008; 3:e3752.

    Article  PubMed  Google Scholar 

  49. Hellstrom M, Phng LK, Hofmann JJ et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 2007; 445:776–780.

    Article  PubMed  Google Scholar 

  50. Li JL, Sainson RC, Shi W et al. Delta-like 4 Notch ligand regulates tumor angiogenesis, improves tumor vascular function and promotes tumor growth in vivo. Cancer Res 2007; 67:1244–1253.

    Google Scholar 

  51. Noguera-Troise I, Daly C, Papadopoulos NJ et al. Blockade of Dll4 inhibits tumour growth by promoting nonproductive angiogenesis. Nature 2006; 444:1032–1037.

    Article  PubMed  CAS  Google Scholar 

  52. Joutel A, Corpechot C, Ducros A et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 1996; 383:707–710.

    Article  PubMed  CAS  Google Scholar 

  53. Hrabe de Angelis M, McIntyre J, 2nd, Gossler A. Maintenance of somite borders in mice requires the Delta homologue DII1. Nature 1997; 386:717–721.

    Article  PubMed  CAS  Google Scholar 

  54. Xue Y, Gao X, Lindsell CE et al. Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Hum Mol Genet 1999; 8:723–730.

    Article  PubMed  CAS  Google Scholar 

  55. Ridgway J, Zhang G, Wu Y et al. Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 2006; 444:1083–1087.

    Article  PubMed  CAS  Google Scholar 

  56. Masuda S, Kumano K, Suzuki T et al. Dual antitumor mechanisms of Notch signaling inhibitor in a T-cell acute lymphoblastic leukemia xenograft model. Cancer Sci 2009; 100:2444–2450.

    Article  PubMed  CAS  Google Scholar 

  57. Luistro L, He W, Smith M et al. Preclinical profile of a potent gamma-secretase inhibitor targeting notch signaling with in vivo efficacy and pharmacodynamic properties. Cancer Res 2009; 69:7672–7680.

    Article  PubMed  CAS  Google Scholar 

  58. Paris D, Quadros A, Patel N et al. Inhibition of angiogenesis and tumor growth by beta and gamma-secretase inhibitors. Eur J Pharmacol 2005; 514:1–15.

    Article  PubMed  CAS  Google Scholar 

  59. Hirashima M, Suda T. Differentiation of arterial and venous endothelial cells and vascular morphogenesis. Endothelium 2006; 13:137–145.

    Article  PubMed  CAS  Google Scholar 

  60. Liu ZJ, Shirakawa T, Li Y et al. Regulation of Notch1 and Dll4 by vascular endothelial growth factor in arterial endothelial cells: implications for modulating arteriogenesis and angiogenesis. Mol Cell Biol 2003; 23:14–25.

    Article  PubMed  Google Scholar 

  61. Lawson ND, Scheer N, Pham VN et al. Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development 2001; 128:675–683.

    Google Scholar 

  62. Zeng Q, Li S, Chepeha DB et al. Crosstalk between tumor and endothelial cells promotes tumor angiogenesis by MAPK activation of Notch signaling. Cancer Cell 2005; 8:13–23.

    Article  PubMed  CAS  Google Scholar 

  63. Meng RD, Shelton CC, Li YM et al. gamma-Secretase inhibitors abrogate oxaliplatin-induced activation of the Notch-1 signaling pathway in colon cancer cells resulting in enhanced chemosensitivity. Cancer Res 2009; 69:73–82.

    Google Scholar 

  64. Wang J, Wakeman TP, Lathia JD et al. Notch promotes radioresistance of glioma stem cells. Stem Cells 2010; 28:17–28.

    Article  PubMed  CAS  Google Scholar 

  65. Osipo C, Patel P, Rizzo P et al. ErbB-2 inhibition activates Notch-1 and sensitizes breast cancer cells to a gamma-secretase inhibitor. Oncogene 2008; 27:5019–5032.

    Article  PubMed  CAS  Google Scholar 

  66. Stommel JM, Kimmelman AC, Ying H et al. Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science 2007; 318:287–290.

    Article  PubMed  CAS  Google Scholar 

  67. Schreck CA, Taylor P, Bar EE et al. Targeting Notch in malignant brain tumors: Crosstalk with Hedgehog as a potential mechanism of treatment resistance AACR Meeting Abstracts 2010; 2010.

    Google Scholar 

  68. Garber K. Notch emerges as new cancer drug target. J Natl Cancer Inst 2007; 99:1284–1285.

    Article  PubMed  Google Scholar 

  69. Zecchini V, Domaschenz R, Winton D et al. Notch signaling regulates the differentiation of postmitotic intestinal epithelial cells. Genes Dev 2005; 19:1686–1691.

    Article  PubMed  CAS  Google Scholar 

  70. Real PJ, Tosello V, Palomero T et al. Gamma-secretase inhibitors reverse glucocorticoid resistance in T-cell acute lymphoblastic leukemia. Nat Med 2009; 15:50–58.

    Article  PubMed  CAS  Google Scholar 

  71. Nicolas M, Wolfer A, Raj K et al. Notch1 functions as a tumor suppressor in mouse skin. Nat Genet 2003; 33:416–421.

    Article  PubMed  CAS  Google Scholar 

  72. Sriuranpong V, Borges MW, Ravi RK et al. Notch signaling induces cell cycle arrest in small cell lung cancer cells. Cancer Res 2001; 61:3200–3205.

    PubMed  CAS  Google Scholar 

  73. Zweidler-McKay PA, He Y, Xu L et al. Notch signaling is a potent inducer of growth arrest and apoptosis in a wide range of B-cell malignancies. Blood 2005; 106:3898–3906.

    Article  PubMed  CAS  Google Scholar 

  74. Hoe HS, Rebeck GW. Regulation of ApoE receptor proteolysis by ligand binding. Brain Res Mol Brain Res 2005; 137:31–39.

    Article  PubMed  CAS  Google Scholar 

  75. Ikeuchi T, Sisodia SS. The Notch ligands, Delta1 and Jagged2, are substrates for presenilin-dependent “gamma-secretase” cleavage. J Biol Chem 2003; 278:7751–7754.

    Article  PubMed  CAS  Google Scholar 

  76. Kanning KC, Hudson M, Amieux PS et al. Proteolytic processing of the p75 neurotrophin receptor and two homologs generates C-terminal fragments with signaling capability. J Neurosci 2003; 23:425–436.

    Google Scholar 

  77. Kim DY, Ingano LA, Kovacs DM. Nectin-1alpha, an immunoglobulin-like receptor involved in the formation of synapses, is a substrate for presenilin/gamma-secretase-like cleavage. J Biol Chem 2002; 277:49976–49981.

    Article  PubMed  CAS  Google Scholar 

  78. Lammich S, Okochi M, Takeda M et al. Presenilin-dependent intramembrane proteolysis of CD44 leads to the liberation of its intracellular domain and the secretion of an Abeta-like peptide. J Biol Chem 2002; 277:44754–44759.

    Article  PubMed  CAS  Google Scholar 

  79. Marambaud P, Shioi J, Serban G et al. A presenilin-1/gamma-secretase cleavage releases the E-cadherin intracellular domain and regulates disassembly of adherens junctions. EMBO J 2002; 21:1948–1956.

    Article  PubMed  CAS  Google Scholar 

  80. Parisiadou L, Fassa A, Fotinopoulou A et al. Presenilin 1 and cadherins: stabilization of cell-cell adhesion and proteolysis-dependent regulation of transcription. Neurodegener Dis 2004; 1:184–191.

    Article  PubMed  CAS  Google Scholar 

  81. Scacheri PC, Rozenblatt-Rosen O, Caplen NJ et al. Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc Natl Acad Sci USA 2004; 101:892–897.

    Article  Google Scholar 

  82. Schulz JG, Annaert W, Vandekerckhove J et al. Syndecan 3 intramembrane proteolysis is presenilin/ gamma-secretase-dependent and modulates cytosolic signaling. J Biol Chem 2003; 278:48651–48657.

    Article  PubMed  CAS  Google Scholar 

  83. Tanigaki K, Nogaki F, Takahashi J et al. Notch1 and Notch3 instructively restrict bFGF-responsive multipotent neural progenitor cells to an astroglial fate. Neuron 2001; 29:45–55.

    Article  PubMed  CAS  Google Scholar 

  84. Taniguchi Y, Kim SH, Sisodia SS. Presenilin-dependent “gamma-secretase” processing of deleted in colorectal cancer (DCC). J Biol Chem 2003; 278:30425–30428.

    Article  PubMed  CAS  Google Scholar 

  85. Orian-Rousseau V. CD44, a therapeutic target for metastasising tumours. Eur J Cancer46;1271–1277.

    Google Scholar 

  86. Xu Y, Stamenkovic I, Yu Q. CD44 attenuates activation of the hippo signaling pathway and is a prime therapeutic target for glioblastoma. Cancer Res70; 2455–2464.

    Google Scholar 

  87. Wang L, Rahn JJ, Lun X et al. Gamma-secretase represents a therapeutic target for the treatment of invasive glioma mediated by the p75 neurotrophin receptor. PLoS Biol 2008; 6:e289.

    Article  Google Scholar 

  88. Fan X, Mikolaenko I, Elhassan I et al. Notch1 and notch2 have opposite effects on embryonal brain tumor growth. Cancer Res 2004; 64:787–793.

    Google Scholar 

  89. LoRusso PM, DeMuth T, Heath E et al. Phase I study of the gamma secretase inhibitor MK-0752 in patients withmetastatic breast and other advanced solid tumors. AACR Meeting Abstracts 2009; 2009.

    Google Scholar 

  90. Lewis SJ, Smith AL, Neduvelil JG et al. A novel series of potent gamma-secretase inhibitors based on a benzobicyclo[4.2.1]nonane core. Bioorg Med Chem Lett 2005; 15:373–378.

    Article  PubMed  CAS  Google Scholar 

  91. Eriksen JL, Sagi SA, Smith TE et al. NSAIDs and enantiomers of flurbiprofen target gamma-secretase and lower Abeta 42 in vivo. J Clin Invest 2003; 112:440–449.

    PubMed  CAS  Google Scholar 

  92. Weggen S, Eriksen JL, Das P et al. A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity. Nature 2001; 414:212–216.

    Article  PubMed  CAS  Google Scholar 

  93. Brou C, Logeat F, Gupta N et al. A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. Mol Cell 2000; 5:207–216.

    Article  PubMed  CAS  Google Scholar 

  94. Hartmann D, de Strooper B, Serneels L et al. The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for alpha-secretase activity in fibroblasts. Hum Mol Genet 2002; 11:2615–2624.

    Article  PubMed  CAS  Google Scholar 

  95. Zhou BB, Peyton M, He B et al. Targeting ADAM-mediated ligand cleavage to inhibit HER3 and EGFR pathways in nonsmall cell lung cancer. Cancer Cell 2006; 10:39–50.

    Article  PubMed  CAS  Google Scholar 

  96. Erkizan HV, Kong Y, Merchant M et al. A small molecule blocking oncogenic protein EWS-FLI1 interaction with RNA helicase A inhibits growth of Ewing’s sarcoma. Nat Med 2009; 15:750–756.

    Article  PubMed  CAS  Google Scholar 

  97. Vassilev LT, Vu BT, Graves B et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004; 303:844–848.

    Article  PubMed  CAS  Google Scholar 

  98. Moellering R, Ramirez R, Verdine G et al. Rational targeting of Notch receptor trafficking. AACR Meeting Abstracts 2009; 2009.

    Google Scholar 

  99. Vaccari T, Lu H, Kanwar R et al. Endosomal entry regulates Notch receptor activation in Drosophila melanogaster. J Cell Biol 2008; 180:755–762.

    Article  PubMed  CAS  Google Scholar 

  100. Yan M, Callahan CA, Beyer JC et al. Chronic DLL4 blockade induces vascular neoplasms. Nature 463; E6–7.

    Google Scholar 

  101. Li K, Li Y, Wu W et al. Modulation of notch signaling by antibodies specific for the extracellular negative regulatory region of Notch3. J Biol Chem 2008; 283:8046–8054.

    Article  PubMed  CAS  Google Scholar 

  102. Wu Y, Cain-Hom C, Choy L et al. Therapeutic antibody targeting of individual Notch receptors. Nature 464; 1052–1057.

    Google Scholar 

  103. Walensky LD, Kung AL, Escher I et al. Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 2004; 305:1466–1470.

    Article  PubMed  CAS  Google Scholar 

  104. Moellering RE, Cornejo M, Davis TN et al. Direct inhibition of the NOTCH transcription factor complex. Nature 2009; 462:182–188.

    Article  PubMed  CAS  Google Scholar 

  105. Maillard I, Weng AP, Carpenter AC et al. Mastermind critically regulates Notch-mediated lymphoid cell fate decisions. Blood 2004; 104:1696–1702.

    Article  PubMed  CAS  Google Scholar 

  106. Guo M, Jan LY, Jan YN. Control of daughter cell fates during asymmetric division: interaction of Numb and Notch. Neuron 1996; 17:27–41.

    Article  PubMed  Google Scholar 

  107. Tsunematsu R, Nakayama K, Oike Y et al. Mouse Fbw7/Sel-10/Cdc4 is required for notch degradation during vascular development. J Biol Chem 2004; 279:9417–9423.

    Article  PubMed  CAS  Google Scholar 

  108. Murchison EP, Hannon GJ. miRNAs on the move: miRNA biogenesis and the RNAi machinery. Curr Opin Cell Biol 2004; 16:223–229.

    Article  PubMed  CAS  Google Scholar 

  109. Yekta S, Shih IH, Bartel DP. MicroRNA-directed cleavage of HOXB8 mRNA. Science 2004; 304:594–596.

    Article  PubMed  CAS  Google Scholar 

  110. Kefas B, Comeau L, Floyd DH et al. The neuronal microRNA miR-326 acts in a feedback loop with notch and has therapeutic potential against brain tumors. J Neurosci 2009; 29:15161–15168.

    Article  PubMed  CAS  Google Scholar 

  111. Li Y, Guessous F, Zhang Y et al. MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res 2009; 69:7569–7576.

    Article  PubMed  CAS  Google Scholar 

  112. Song G, Zhang Y, Wang L. MicroRNA-206 targets notch3, activates apoptosis and inhibits tumor cell migration and focus formation. J Biol Chem 2009; 284:31921–1927.

    Article  PubMed  CAS  Google Scholar 

  113. Wang C, Yao N, Lu CL et al. Mouse microRNA-124 regulates the expression of Hes1 in P19 cells. Front Biosci (Elite Ed)2:127–132.

    Google Scholar 

  114. Skog J, Wurdinger T, van Rijn S et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 2008; 10:1470–1476.

    Article  PubMed  CAS  Google Scholar 

  115. Yuan A, Farber EL, Rapoport AL et al. Transfer of microRNAs by embryonic stem cell microvesicles. PLoS One 2009; 4:e4722.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Purow, B. (2012). Notch Inhibition as a Promising New Approach to Cancer Therapy. In: Reichrath, J., Reichrath, S. (eds) Notch Signaling in Embryology and Cancer. Advances in Experimental Medicine and Biology, vol 727. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0899-4_23

Download citation

Publish with us

Policies and ethics