Skip to main content
Log in

Development of a genetic linkage map for Pinus radiata and detection of pitch canker disease resistance associated QTLs

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

The heritability of genetic resistance of radiata pine against Fusarium circinatum was not clear. We demonstrated that there are at least 3 QTLs that could be involved in this resistance/susceptibility.

Abstract

A genetic linkage map was developed for Pinus radiata, using Amplified Fragment Length Polymorphism (AFLP), Inter-Simple Sequence Repeat (ISSR), Selective Amplification of Microsatellite Polymorphic Loci (SAMPL), and Simple Sequence Repeat (SSR) molecular markers, based on a two-way pseudo-testcross strategy, using 86 individuals of a F1 full-sib family and 787 molecular markers for genotyping. Linkage analysis generated a map of medium to high density for each parent, with 1,060 and 1,258 cM for parents XO and XP, respectively. A total of 458 markers were mapped on 12 linkage groups (LG) in XO and XP, which equals the number of haploid chromosomes present in P. radiata. Analysis of quantitative trait loci (QTL) for resistance against pitch canker disease caused by Fusarium circinatum was made using Bayesian Information Criterion (BIC). In the XO parental map, two groups (LG-1 and LG-9) showed high probabilities for one or more QTLs. Only one group (LG-9) in the XP parental map showed probability for one or more QTLs. The results indicate that resistance to pitch canker is inherited from both parents. These results provide the basis for further studies focused on structure, evolution, and function of the P. radiata genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aegerter BJ, Gordon TR (2006) Rates of pitch canker induced seedling mortality among Pinus radiata families varying in levels of genetic resistance to Gibberella circinata (anamorph Fusarium circinatum). Forest Ecol Manag 235:14–17

    Article  Google Scholar 

  • Alonso R, Bettucci L (2009) First report of the pitch canker fungus Fusarium circinatum affecting Pinus taeda seedlings in Uruguay. Australas Plant Dis Notes 4:91–92

    Google Scholar 

  • Ball RD (2001) Bayesian methods for quantitative trait loci mapping based on model selection: approximate analysis using the Bayesian Information Criterion. Genetics 159:1351–1364

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beavis WD (1994) The power and deceit of QTL experiments: lessons from comparative QTL studies. In: Proceedings of the 49th annual corn and sorghum industry research conference. American Seed Trade Association, Washington, pp 250–266

  • Beeche M, Gonzalez P, Ide S, Sandoval A, Murillo ME (2005) Informativo fitosanitario forestal. Servicio Agrícola y Ganadero 1:1–5

    Google Scholar 

  • Berry CR, Hepting GH (1959) Pitch canker of southern pines. USDA For. Pest Leaflet No. 35

  • Bragança H, Diogo E, Moniz F, Amaro P (2009) First report of pitch canker on pines caused by Fusarium circinatum in Portugal. Plant Dis 93(10):1079

    Article  Google Scholar 

  • Carlucci A, Colatruglio L, Frisullo S (2007) First report of pitch canker caused by Fusarium circinatum on Pinus halepensis and P. pinea in Apulia (Southern Italy). Plant Dis 91(12):1683

    Article  Google Scholar 

  • Chagné D, Lalanne C, Madur D, Kumar S, Frigério JM, Krier C, Decroocq S, Savouré A, Bou-Dagher-Kharrat M, Bertocchi E, Brach J, Plomion C (2002) A high density genetic map of maritime pine based on AFLPs. Ann For Sci 59:627–636

    Article  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Coutinho T, Steenkamp E, Mongwaketzi K, Wilmot M, Wingfield M (2007) First outbreak of pitch canker in south african pine plantation. Australas Plant Pathol 36:256–261

    Article  Google Scholar 

  • Devey ME, Bell JC, Smith DN, Neale DB, Moran GF (1996) A genetic linkage map for Pinus radiata based on RFLP, RAPD, and microsatellite markers. Theor Appl Genet 92:673–679

    Article  CAS  PubMed  Google Scholar 

  • Devey M, Sewell M, Uren T, Neale D (1999) Comparative mapping in loblolly and radiata pine using RFLP and microsatellite markers. Theor Appl Genet 99:656–662

    Article  CAS  PubMed  Google Scholar 

  • Devey M, Bell J, Uren T, Moran G (2002) A set of microsatellite markers for fingerprinting and breeding applications in Pinus radiata. Genome 45:984–989

    Article  CAS  PubMed  Google Scholar 

  • Devey M, Groom K, Nolan M, Bell J, Dudzinski M, Old K, Matheson A, Moran G (2004a) Detection and verification of quantitative trait loci for resistance to Dothistroma needle blight in Pinus radiata. Theor Appl Genet 108:1056–1063

    Article  CAS  PubMed  Google Scholar 

  • Devey M, Carson S, Nolan M, Matheson A, Te Riini C, Hohepa J (2004b) QTL associations for density and diameter in Pinus radiata. Theor Appl Genet 108:516–524

    Article  CAS  PubMed  Google Scholar 

  • Dwinell LD, Adams D, Guerra-Santos JJ, Aquirre JRM (1998) Pitch canker disease of Pinus radiata. Paper 3.7.30 in offered paper abstracts—volume 3. In: Proceedings of the 7th international congress of plant pathology, Edinburgh, Scotland

  • Echt CS, Nelson CD (1997) Linkage mapping and genome length in eastern white pine (Pinus strobus L.). Theor Appl Genet 94:1031–1037

    Article  CAS  Google Scholar 

  • Echt CS, Saha S, Krutovsky KV, Wimanalathan K, Erpelding JE, Liang C, Nelson CD (2011) An annotated genetic map of loblolly pine based on microsatellite and cDNA markers. BMC Genet 12:17

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eckert A, Pande B, Ersoz E, Wright H, Rashbrook V, Nicolet Ch, Neale D (2009) High-throughput genotyping and mapping of single nucleotide polymorphisms in loblolly pine (Pinus taeda L.). Tree Genet Genom 5:225–234

    Article  Google Scholar 

  • Gerber S, Rodolphe F (1994) An estimation of the genome length of maritime pine (Pinus pinaster Ait). Theor Appl Genet 88:289–292

    CAS  PubMed  Google Scholar 

  • Gonzalez G (2005) Resultados preliminares del estudio de Fusarium circinatum: conocimiento del patógeno y establecimiento de bases para su control. En: Resúmenes de la XX Silvotecna: Sanidad forestal en un mundo globalizado. Sesión no 13, Concepción, Chile

  • Gordon TR, Storer AJ, Wood DL (2001) The pitch canker epidemic in California. Plant Dis 85:1128–1139

    Article  Google Scholar 

  • Gordon TR, Kirkpatrick SC, Aegerter BJ, Wood DL, Storer AJ (2006) Susceptibility of Douglas fir (Pseudotsuga menziesii) to pitch canker, caused by Gibberella circinata. Plant Pathol 55:231–237

    Article  Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guerra-Santos J (1998) Pitch canker on Monterey pine in Mexico. In: Devey M, Matheson C, Gordon TR (eds) Current and potential impacts of pitch canker in radiata pine. Proceedings of the IMPACT monterey workshop, Monterey, California, 30 November to 3 December. CSIRO, Collingwood, Victoria, Australia, pp 58–61

  • Hasbún R, Iturra C, Moraga P, Wachtendorff P, Quiroga P, Valenzuela S (2011) An efficient and reproducible protocol for production of AFLP markers in tree genomes using fluorescent capillary detection. Tree Genet Genom. doi:10.1007/s11295-011-0463-6

    Google Scholar 

  • Hepting GH, Roth ER (1946) Pitch canker, a new disease of some southern pines. J For 44:742–774

    Google Scholar 

  • Hizume M, Shibata F, Matsusaki Y, Garajova Z (2002) Chromosome identification and comparative karyotypic analices of four Pinus species. Theor Appl Genet 105:491–497

    Article  PubMed  Google Scholar 

  • Hodge GR, Dvorak WS (2000) Differential responses of Central American and Mexican pine species and Pinus radiata to infection by the pitch canker fungus. New For 19:241–258

    Article  Google Scholar 

  • Hulbert SH, Hott TW, Legg EJ, Lincoln SE, Lander ES, Michelmore RW (1988) Genetic analysis of the fungus, Bremia lactucae, using restriction fragment length polymorphisms. Genetics 120:947–958

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hurme P, Sillanpää M, Repo T, Arjas E, Savolainen O (2000) Genetic basis of climatic adaptation in Scots pine by Bayesian QTL analysis. Genetics 156:1309–1322

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jacobs A, Coutinho TA, Wingfield MJ, Ahumada R, Wingfield BD (2007) Characterization of the pitch canker fungus, Fusarium circinatum, from Chile. S Afr J Sci 103:253–257

    CAS  Google Scholar 

  • Kayihan GC, Huber DA, Morse AM, White TL, Davis JM (2005) Genetic dissection of fusiform rust and pitch canker disease traits in loblolly pine. Theor Appl Genet 110:948–958

    Article  PubMed  Google Scholar 

  • Kou Y, Wang S (2010) Broad-spectrum and durability: understanding of quantitative disease resistance. Curr Opin Plan Biol 13:1–5

    Article  Google Scholar 

  • Kuang H, Richardson TE, Carson SD, Wilcox PL, Bongarten B (1999) Genetic analysis of inbreeding depression in plus tree 850.055 of Pinus radiata D. Don. 1. Genetic map with distorted markers. Theor Appl Genet 98:697–703

    Article  CAS  Google Scholar 

  • Kubisiak TL, Nelson CD, Nowak J, Friend AL (2000) Genetic linkage mapping of genomic regions conferring tolerance to high aluminum in slash pine. J Sust For 10:69–78

    Article  Google Scholar 

  • Lopez-Zamora I, Bliss C, Jokela EJ, Comerford NB, Grunwald S, Barnard EL, Vasquez GM (2007) Spatial relationships between nitrogen status and pitch canker disease in slash pine planted adjacent to a poultry operation. Environ Pollut 147:101–111

    Article  CAS  PubMed  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Matheson AC, Devey ME, Gordon TR, Werner W, Vogler DR, Balocchi C, Carson MJ (2006) Heritability of response to inoculation by pine pitch canker of seedlings of radiata pine. Aust For J 70:101–106

    Article  Google Scholar 

  • Mitchell G, Jones N, Coutinho T (2005) Alternatives to benomyl fungicide in controlling Fusarium circinatum: results from in vitro studies. Forest research shaw research centre, SAPPI, South Africa, pp 1–14 (Document 3)

    Google Scholar 

  • Moraga-Suazo P, Opazo A, Zaldúa S, Gonzalez G, Sanfuentes E (2011) Evaluation of Trichoderma spp. and Clonostachys spp. strains to control Fusarium circinatum in Pinus radiata seedlings. Chil J Agric Res 71:412–441

    Article  Google Scholar 

  • Moraga-Suazo P, Hasbún R, Balocchi C, Valenzuela S (2012) Establishment and optimization of ISSR and SAMPL molecular markers as a tool for breeding programs of Pinus radiata. Bosque (Valdivia) 33(1):93–98

    Article  Google Scholar 

  • Morse AM, Nelson CD, Covert SF, Holliday AG, Smith KE, Davis JM (2004) Pine genes regulated by necrotrophic fungus Fusarium circinatum. Theor Appl Genet 109:922–932

    Article  CAS  PubMed  Google Scholar 

  • Muramoto H, Dwinell LD (1990) Pitch canker of Pinus luchuensis in Japan. Plant Dis 74:530

    Article  Google Scholar 

  • Plomion C, Durel C-E, O’Malley DM (1996) Genetic dissection of height in maritime pine seedlings raised under accelerated growth conditions. Theor Appl Genet 93:849–858

    Article  CAS  PubMed  Google Scholar 

  • Plomion C, Chagné D, Pot D, Kumar S, Wilcox P, Burdon R, Prat D, Peterson D, Paiva J, Chaumeil P, Vendramin G, Sebastiani F, Nelson C, Echt C, Savolainen O, Kubisiak T, Cervera M, De María N, Islam-Faridi M (2007) In: Genome mapping and molecular breeding in plants, volume 7 forest trees. Chap 2, pp 29–92

  • Quesada T, Gopal V, Cumbie WP, Eckert AJ, Wegrzyn JL, Neale DB, Goldfarb B, Huber DA, Casella G, Davis JM (2010) Association mapping of quantitative disease resistance in a natural population of loblolly pine (Pinus taeda L.). Genetics 186:677–686

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. Vienna, Austria: the R Foundation for Statistical Computing. ISBN: 3-900051-07-0. Available online at http://www.R-project.org/

  • Raftery AE, Madiganand D, Hoeting JA (1997) Bayesian model averaging for linear regression models. J Am Stat Assoc 92(437):179–191

    Article  Google Scholar 

  • Remington DL, Whetten RW, Liu BH, O’Malley DM (1999) Construction of an AFLP genetic map with nearly complete genome coverage in Pinus taeda. Theor Appl Genet 98:1279–1292

    Article  CAS  PubMed  Google Scholar 

  • Rotella A (2005) Manejo del hongo Fusarium circinatum en viveros forestales. En: Resúmenes de la XX Silvotecna: Sanidad forestal en un mundo globalizado. Sesión no 12, Concepción, Chile

  • SAS Institute Inc., (2000) SAS 9.1.3 Help and Documentation, Cary, NC: SAS Institute Inc.,

  • Schmale D, Gordon T (2003) Variation in susceptibility to pitch canker disease, caused by Fusarium circinatum, in native stands of Pinus muricata. Plant Pathol 52:720–725

    Article  Google Scholar 

  • Schweigkofler W, O`Donnell K, Garbelotto M (2004) Detection and quantification of airborne conidia of Fusarium circinatum, the causal agent of pine pitch canker, from two California sites by using a real-time PCR approach cobined with a simple spore trapping method. Appl Environ Microb 70:3512–3520

    Article  CAS  Google Scholar 

  • Semagn K, Bjornstad A, Ndjiondjop MN (2006) Principles, requirements and prospects of genetics mapping in plants. Afr J Biotechnol 5:2569–2587

    CAS  Google Scholar 

  • Sewell MM, Neale DB (2000) Mapping quantitative traits in forest trees. In: Jain SM, Minocha SC (eds) Molecular biology of woody plants. Kluwer, Dordrecht, pp 407–433

    Chapter  Google Scholar 

  • Shepherd M, Cross M, Maguire T, Dieters M, Williams C, Henry R (2002) Transpecific microsatellites for hard pines. Theor Appl Genet 104:819–827

    Article  CAS  PubMed  Google Scholar 

  • Smith DN, Devey ME (1994) Occurrence and inheritance of microsatellites in Pinus radiata. Genome 37:977–983

    Article  CAS  PubMed  Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JOINMAP. Plant J 3:739–744

    Article  CAS  Google Scholar 

  • Steenkamp ET, Rodas CA, Kvas M, Wingfield MJ (2012) Fusarium circinatum and pitch canker of Pinus in Colombia. Australas Plant Pathol 41(5):483–491

    Article  Google Scholar 

  • Viljoen A, Wingfield MJ, Marasas WFO (1994) First report of Fusarium subglutinans f. sp. pini on pine seedlings in South Africa. Plant Dis 78:309–312

    Article  Google Scholar 

  • Wikler K, Gordon TR (2000) An initial assessment of genetic relationships among populations of Fusarium circinatum in different parts of the world. Can J Bot 78:709–717

    Google Scholar 

  • Wikler K, Gordon TR, Storer AJ, Wood DL (2003) Pitch Canker. Integrated pest management for home gardeners and landscape professionals. Pest Note 741707:1–5

    Google Scholar 

  • Wilcox PL, Richardson TE, Corbet GE, Ball RD, Lee JR, Djorovic A, Carson SD (2001) Framework linkage maps of Pinus radiata D. Don based on pseudotestcross markers. For Genet 8:109–117

    Google Scholar 

  • Wilcox PL, Cato S, McMillan L, Power M, Ball RD, Burdon RD, Echt CS (2004) Patterns of linkage disequilibrium in Pinus radiata. In: Plant and animal genome XII Conf, San Diego, pp W89. http://www.intlpag.org/12/abstracts/W22_PAG12_89.html

  • Wingfield MJ, Jacobs A, Coutinho TA, Ahumada R, Wingfield BD (2002) First report of the pitch canker fungus, Fusarium circinatum, on pines in Chile. Plant Pathol 51:397

    Article  Google Scholar 

  • Wingfield MJ, Hammerbacher A, Ganley R, Steenkamp E, Gordon T, Wingfield B, Coutinho T (2008) Pitch canker caused by Fusarium circinatum—a growing threat to pine plantations and forest worldwide. Austral Plant Pathol 37:319–334

    Article  Google Scholar 

  • Xu S (2003) Theoretical basis of the Beavis effect. Genetics 165:2259–2268

  • Zimin A, Stevens KA, Crepeau MW, Holtz-Morris A, Koriabine M, Marçais G, Puiu D, Roberts M, Wegrzyn JL, de Jong PJ, Neale DB, Salzberg SL, Yorke JA, Langley CH (2014) Sequencing and assembly of the 22-gb loblolly pine genome. Genetics 196:875–890

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financed by Genómica Forestal (CORFO, grant number 05CTE04-02) and a PhD grant from Comisión Nacional de Ciencia y Tecnología (23100216) to PM.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Valenzuela.

Additional information

Communicated by J. Carlson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moraga-Suazo, P., Orellana, L., Quiroga, P. et al. Development of a genetic linkage map for Pinus radiata and detection of pitch canker disease resistance associated QTLs. Trees 28, 1823–1835 (2014). https://doi.org/10.1007/s00468-014-1090-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-014-1090-2

Keywords

Navigation