Skip to main content
Log in

Anthropometric and Demographic Correlates of Dual-Axis Swallowing Accelerometry Signal Characteristics: A Canonical Correlation Analysis

  • Original Article
  • Published:
Dysphagia Aims and scope Submit manuscript

Abstract

Swallowing accelerometry has been proposed as a potential minimally invasive tool for collecting assessment information about swallowing. The first step toward using sounds and signals for dysphagia detection involves characterizing the healthy swallow. The purpose of this article is to explore systematic variations in swallowing accelerometry signals that can be attributed to demographic factors (such as participant gender and age) and anthropometric factors (such as weight and height). Data from 50 healthy participants (25 women and 25 men), ranging in age from 18 to 80 years and with approximately equal distribution across four age groups (18-35, 36-50, 51-65, 66 and older) were analyzed. Anthropometric and demographic variables of interest included participant age, gender, weight, height, body fat percent, neck circumference, and mandibular length. Dual-axis (superior-inferior and anterior-posterior) swallowing accelerometry signals were obtained for five saliva and five water swallows per participant. Several swallowing signal characteristics were derived for each swallowing task, including variance, amplitude distribution skewness, amplitude distribution kurtosis, signal memory, total signal energy, peak energy scale, and peak amplitude. Canonical correlation analysis was performed between the anthropometric/demographic variables and swallowing signal characteristics. No significant linear relationships were identified for saliva swallows or for superior-inferior axis accelerometry signals on water swallows. In the anterior-posterior axis, signal amplitude distribution kurtosis and signal memory were significantly correlated with age (r = 0.52, P = 0.047). These findings suggest that swallowing accelerometry signals may have task-specific associations with demographic (but not anthropometric) factors. Given the limited sample size, our results should be interpreted with caution and replication studies with larger sample sizes are warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vice F, Bosma J, Cervical auscultation of feeding in adults. Video available from the University of Maryland School of Medicine (undated).

  2. Cichero JA, Murdoch BE. Detection of swallowing sounds: methodology revisited. Dysphagia. 2002;17:40–9. doi:10.1007/s00455-001-0100-x.

    Article  PubMed  Google Scholar 

  3. Hamlet S, Penney DG, Formolo J. Stethoscope acoustics and cervical auscultation of swallowing. Dysphagia. 1994;9:63–8. doi:10.1007/BF00262761.

    Article  CAS  PubMed  Google Scholar 

  4. Takahashi K, Groher ME, Michi K. Methodology for detecting swallowing sounds. Dysphagia. 1994;9:54–62.

    CAS  PubMed  Google Scholar 

  5. Takahashi K, Groher ME, Michi K. Symmetry and reproducibility of swallowing sounds. Dysphagia. 1994;9:168–73. doi:10.1007/BF00341261.

    Article  CAS  PubMed  Google Scholar 

  6. Joshi AM, Reddy NP, Rane M, Canilang EP, Casterline J, Candadai RS. Biomechanical measurement of the swallowing reflex. J Biomech. 1989;22:1031. doi:10.1016/0021-9290(89)90304-7.

    Article  Google Scholar 

  7. Reddy NP, Katakam A, Gupta V, Unnikrishnan R, Narayanan J, Canilang EP. Measurements of acceleration during videofluorographic evaluation of dysphagic patients. Med Eng Phys. 2000;22:405–12. doi:10.1016/S1350-4533(00)00047-3.

    Article  CAS  PubMed  Google Scholar 

  8. Reddy NP, Thomas R, Canilang EP, Casterline J. Toward classification of dysphagic patients using biomechanical measurements. J Rehabil Res Dev. 1994;31:335–44.

    CAS  PubMed  Google Scholar 

  9. Reddy N, Canilang E, Casterline J, Rane M, Joshi A, Thomas R, et al. Noninvasive acceleration measurements to characterize the pharyngeal phase of swallowing. J Biomed Eng. 1991;13:379–83. doi:10.1016/0141-5425(91)90018-3.

    Article  CAS  PubMed  Google Scholar 

  10. Selley WG, Ellis RE, Flack FC, Bayliss CR, Pearce VR. The synchronization of respiration and swallow sounds with videofluoroscopy during swallowing. Dysphagia. 1994;9:162–7. doi:10.1007/BF00341260.

    Article  CAS  PubMed  Google Scholar 

  11. Leslie P, Drinnan MJ, Zammit-Maempel I, Coyle JL, Ford GA, Wilson JA. Cervical auscultation synchronized with images from endoscopy swallow evaluations. Dysphagia. 2007;22:290–8. doi:10.1007/s00455-007-9084-5.

    Article  PubMed  Google Scholar 

  12. Boiron M, Rouleau P, Metman EH. Exploration of pharyngeal swallowing by audio signal recording. Dysphagia. 1997;12:86–92. doi:10.1007/PL00009524.

    Article  CAS  PubMed  Google Scholar 

  13. Perlman AL, Ettema SL, Barkmeier J. Respiratory and acoustic signals associated with bolus passage during swallowing. Dysphagia. 2000;15:89–94.

    CAS  PubMed  Google Scholar 

  14. Cichero JA, Murdoch BE. The physiologic cause of swallowing sounds: answers from heart sounds and vocal tract acoustics. Dysphagia. 1998;13:39–52. doi:10.1007/PL00009548.

    Article  CAS  PubMed  Google Scholar 

  15. Cichero JA, Murdoch BE. What happens after the swallow? Introducing the glottal release sound. J Med Speech-Lang Pathol. 2003;11:34–41.

    Google Scholar 

  16. Moriniere S, Beutter P, Boiron M. Sound component duration of healthy human pharyngoesophageal swallowing: a gender comparison study. Dysphagia. 2006;21:175–82. doi:10.1007/s00455-006-9023-x.

    Article  PubMed  Google Scholar 

  17. Borr C, Hielscher-Fastabend M, Lucking A. Reliability and validity of cervical auscultation. Dysphagia. 2007;22:225–34. doi:10.1007/s00455-007-9078-3.

    Article  PubMed  Google Scholar 

  18. Leslie P, Drinnan MJ, Finn P, Ford GA, Wilson JA. Reliability and validity of cervical auscultation: a controlled comparison using videofluoroscopy. Dysphagia. 2004;19:231–40.

    PubMed  Google Scholar 

  19. Cichero JA, Murdoch BE. Acoustic signature of the normal swallow: characterization by age, gender, and bolus volume. Ann Otol Rhinol Laryngol. 2002;111:623–32.

    PubMed  Google Scholar 

  20. Youmans SR, Stierwalt JA. An acoustic profile of normal swallowing. Dysphagia. 2005;20:195–209. doi:10.1007/s00455-005-0013-1.

    Article  PubMed  Google Scholar 

  21. Kent RD. Phonetics acoustic. In: Kent RD, editor. The Speech Sciences. San Diego: Singular Publishing; 1997. p. 329–67.

  22. Lee J, Steele CM, Chau T. Time and time-frequency characterization of dual-axis swallowing accelerometry signals. Physiol Meas. 2008;29:1105–20. doi:10.1088/0967-3334/29/9/008.

    Article  CAS  PubMed  Google Scholar 

  23. Sejdić E, Steele CM, Chau T. Segmentation of dual-axis swallowing accelerometry signals in healthy subjects with analysis of anthropometric effects on duration of swallowing activities. IEEE Trans Biomed Eng. 2009;56(4):1090–7.

    Article  PubMed  Google Scholar 

  24. Sejdic E, Komisar V, Steele CM, Chau T. An investigation of baseline characteristics of dual-axis swallowing accelerometry characteristics. IEEE Trans Biomed Eng. 2009 (submitted).

  25. Huckabee M, Garcia M, Barofsky I. SEMG measurement of the head and neck: applications to dysphagia rehabilitation. Dysphagia. 1996;11:165–8. doi:10.1007/BF00417909. [abstract].

    Article  Google Scholar 

  26. Evetovich T, Housh T, Johnson G, Smith D, Ebersole K, Perry S. Gender comparisons of the mechanomyographic responses to maximal concentric and eccentric isokinetic muscle actions. Med Sci Sports Exerc. 1998;30:1697–702. doi:10.1097/00005768-199812000-00007.

    Article  CAS  PubMed  Google Scholar 

  27. Nonaka H, Mita K, Akataki K, Watakabe M, Itoh Y. Sex differences in mechanomyographic responses to voluntary isometric contractions. Med Sci Sports Exerc. 2006;38:1311–6. doi:10.1249/01.mss.0000227317.31470.16.

    Article  PubMed  Google Scholar 

  28. Kidd D, Lawson J, Nesbitt R, MacMahon J. Aspiration in acute stroke: a clinical study with videofluoroscopy. Q J Med. 1993;86:825–9.

    CAS  PubMed  Google Scholar 

  29. Martino R, Pron G, Diamant NE. Screening for oropharyngeal dysphagia in stroke: insufficient evidence for guidelines. Dysphagia. 2000;15:19–30.

    CAS  PubMed  Google Scholar 

  30. Mari F, Matei M, Ceravolo MG, Pisani A, Montesi A, Provinciali L. Predictive value of clinical indices in detecting aspiration in patients with neurological disorders. J Neurol Neurosurg Psychiatry. 1997;63:456–60. doi:10.1136/jnnp.63.4.456.

    Article  CAS  PubMed  Google Scholar 

  31. Logemann JA, Veis S, Colangelo L. A screening procedure for oropharyngeal dysphagia. Dysphagia. 1999;14:44–51. doi:10.1007/PL00009583.

    Article  CAS  PubMed  Google Scholar 

  32. Daniels SK, Ballo LA, Mahoney MC, Foundas AL. Clinical predictors of dysphagia and aspiration risk: outcome measures in acute stroke patients. Arch Phys Med Rehabil. 2000;81:1030–3. doi:10.1053/apmr.2000.6301.

    Article  CAS  PubMed  Google Scholar 

  33. Donoho DL. De-noising by soft-thresholding. IEEE Trans Inf Theory. 1995;41:613–27. doi:10.1109/18.382009.

    Article  Google Scholar 

  34. Lee J, Blain S, Casas M, Kenny D, Berall G, Chau T. A radial basis classifier for the automatic detection of aspiration in children with dysphagia. J Neuroeng Rehabil. 2006;3:14–31. doi:10.1186/1743-0003-3-14.

    Article  PubMed  Google Scholar 

  35. Abdelmonem AA, Clark V, May S. Computer aided multi-variate analysis. New York: CRC Press; 2004.

    Google Scholar 

  36. Hardoon DR, Szedmak S, Shawe-Taylor J. Canonical correlation analysis: an overview with application to learning methods. Southampton, UK: Image, Speech and Intelligent Systems Research Group, School of Electronics and Computer Science, University of Southampton, 2004.

  37. Kelly L, Manly BFJ. Multivariate statistical methods: a primer. 3rd ed. New York: CRC Press; 2004.

    Google Scholar 

  38. Stevens JP. Applied multivariate statistics for the social sciences. 4th ed. Mahwah, NJ: Lawrence Erlbaum Associates; 2002.

    Google Scholar 

  39. Feinstein AR. Principles of medical statistics. Boca Raton, FL: Chapman & Hall; 2002.

    Google Scholar 

  40. Smeitink E, Dekker R. A simple approximation to the renewal function. IEEE Trans Reliab. 1990;39:71–5. doi:10.1109/24.52614.

    Article  Google Scholar 

  41. Sugiyama T, Ushizawa K. Power of largest root on canonical correlation. Commun Stat. 1992;21:947–60.

    Google Scholar 

  42. Hiss SG, Treole K, Stuart A. Effects of age, gender, bolus volume, and trial on swallowing apnea duration and swallow/respiratory phase relationships of normal adults. Dysphagia. 2001;16:128–35. doi:10.1007/s004550011001.

    Article  CAS  PubMed  Google Scholar 

  43. Moriniere S, Boiron M, Alison D, Makris P, Beutter P. Origin of the sound components during pharyngeal swallowing in normal subjects. Dysphagia. 2008;23:267–73. doi:10.1007/s00455-007-9134-z.

    Article  PubMed  Google Scholar 

  44. Kim Y, McCullough GH. Maximal hyoid displacement in normal swallowing. Dysphagia. 2008;23:274–9. doi:10.1007/s00455-007-9135-y.

    Article  PubMed  Google Scholar 

  45. Chi-Fishman G, Sonies BC. Effects of systematic bolus viscosity and volume changes on hyoid movement kinematics. Dysphagia. 2002;17:278–87. doi:10.1007/s00455-002-0070-7.

    Article  PubMed  Google Scholar 

  46. Ishida R, Palmer JB, Hiiemae KM. Hyoid motion during swallowing: factors affecting forward and upward displacement. Dysphagia. 2002;17:262–72. doi:10.1007/s00455-002-0064-5.

    Article  PubMed  Google Scholar 

  47. Kendall KA, Leonard RJ. Hyoid movement during swallowing in older patients with dysphagia. Arch Otolaryngol Head Neck Surg. 2001;127:1224–9.

    CAS  PubMed  Google Scholar 

  48. Perlman AL, Vandaele DJ, Otterbacher MS. Quantitative assessment of hyoid bone displacement from video images during swallowing. J Speech Hear Res. 1995;38:579–85.

    CAS  PubMed  Google Scholar 

  49. Mendoza JL, Markos VH, Gonter R. A new perspective on sequential testing procedures in canonical analysis: a Monte Carlo evaluation. Multivariate Behav Res. 1978;13:371–82. doi:10.1207/s15327906mbr1303_8.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Ontario Science Centre Payload Science Program and to Dr. Ervin Sejdic, Erin Yeates, Anna Ammoury, Joon Lee, Kadeen Johns, Julie Chan, and Katherine Chow for assistance with data collection and analysis. This research was supported by funding from an Ontario Centres of Excellence Proof of Principle Grant, Panacis Medical, and the Toronto Rehabilitation Institute. The authors acknowledge the support of the Toronto Rehabilitation Institute which receives funding under the Provincial Rehabilitation Research Program from the Ministry of Health and Long-term Care in Ontario. The views expressed do not necessarily reflect those of the ministry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catriona M. Steele.

Glossary

Daubechies Wavelet

A family of orthogonal wavelets often used to generate a time-frequency representation of physiologic and biomechanical signals.

Frequency at Peak Intensity

(used by Cichero and Murdoch [19]): The peak frequency at the point of the peak intensity (FPI), measured in Hz, was defined as the highest frequency at the point of highest intensity and was obtained directly from the sound spectrogram.

Frequency Range

(used by Cichero and Murdoch [19]): The highest frequency of an acoustic signal, in Hz, obtained directly from a sound spectrogram.

Kurtosis

A measure of the “peakedness” of the probability distribution of a variable (in the case of this article, of the accelerometry signal’s amplitude distribution).

Peak Frequency

The frequency of the “loudest sound,” in Hz.

Peak Intensity

(used by Cichero and Murdoch [19]): The point of highest displacement of an acoustic signal on an energy contour (5-ms frame length, no smoothing), recorded in decibels (dB).

Scale

Generally, the “frequency” dimension of a wavelet transform. In this article, scale is the level of the discrete wavelet transform of the signal bearing the highest fraction of the signal energy.

Signal Memory

The lag at which the autocorrelation of the signal decays to 1/e of its maximum.

Skewness

A measure of the asymmetry of the probability distribution of a variable.

Variance

A measure of statistical dispersion, averaging the squared distance of a variable’s possible values from the mean.

Wavelet Transform

A wavelet is a mathematical function used to divide a signal into different scale and time components. A wavelet transform generates a multiresolution time-frequency representation of a signal. Wavelet transforms have advantages over traditional Fourier transforms for representing functions that have discontinuities and sharp peaks, and for accurately deconstructing and reconstructing finite, nonperiodic, and/or nonstationary signals.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanna, F., Molfenter, S.M., Cliffe, R.E. et al. Anthropometric and Demographic Correlates of Dual-Axis Swallowing Accelerometry Signal Characteristics: A Canonical Correlation Analysis. Dysphagia 25, 94–103 (2010). https://doi.org/10.1007/s00455-009-9229-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00455-009-9229-9

Keywords

Navigation