Skip to main content
Log in

Optimization of aeration for biodiesel production by Scenedesmus obliquus grown in municipal wastewater

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Despite the significant breakthroughs in research on microalgae as a feedstock for biodiesel, its production cost is still much higher than that of fossil diesel. One possible solution to overcome this problem is to optimize algal growth and lipid production in wastewater. The present study examines the optimization of pretreatment of municipal wastewater and aeration conditions in order to enhance the lipid productivity of Scenedesmus obliquus. Results showed that no significant differences were recorded in lipid productivity of S. obliquus grown in primary settled or sterilized municipal wastewater; however, ultrasound pretreatment of wastewater significantly decreased the lipid production. Whereas, aeration rates of 0.2 vvm significantly increased lipid content by 51 %, with respect to the non-aerated culture, which resulted in maximum lipid productivity (32.5 mg L−1 day−1). Furthermore, aeration enrichment by 2 % CO2 resulted in increase of lipid productivity by 46 % over the CO2 non-enriched aerated culture. Fatty acid profile showed that optimized aeration significantly enhanced monounsaturated fatty acid production, composed mainly of C18:1, by 1.8 times over the non-aerated S. obliquus culture with insignificant changes in polyunsaturated fatty acid proportion; suggesting better biodiesel characteristics for the optimized culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Singh A, Olsen SI (2011) A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Appl Energy 88(10):3548–3555

    Article  CAS  Google Scholar 

  2. Abomohra A, El-Sheekh M, Hanelt D (2014) Pilot cultivation of the chlorophyte microalga Scenedesmus obliquus as a promising feedstock for biofuel. Biomass Bioenergy 64:237–244

    Article  CAS  Google Scholar 

  3. Jiang L, Luo S, Fan X, Yang Z, Guo R (2011) Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2. Appl Energy 88(10):3336–3341

    Article  CAS  Google Scholar 

  4. Yang J, Xu M, Zhang X, Hu Q, Sommerfeld M, Chen Y (2011) Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresour Technol 102(1):159–165

    Article  CAS  Google Scholar 

  5. Ketheesan B, Nirmalakhandan N (2011) Development of a new airlift-driven raceway reactor for algal cultivation. Appl Energy 88(10):3370–3376

    Article  CAS  Google Scholar 

  6. Chen G, Zhao L, Qi Y (2015) Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: a critical review. Appl Energy 137:282–291

    Article  Google Scholar 

  7. de la Noüe J, Laliberté G, Proulx D (1992) Algae and waste water. J Appl Phycol 4(3):247–254

    Article  Google Scholar 

  8. Martijn EJ, Redwood M (2005) Wastewater irrigation in developing countries—limitations for farmers to adopt appropriate practices. Irrig Drain 54(S1):S63–S70

    Article  Google Scholar 

  9. Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929

    Article  CAS  Google Scholar 

  10. Flotats X, Bonmatí A, Fernández B, Magrí A (2009) Manure treatment technologies: on-farm versus centralized strategies. NE Spain as case study. Bioresour Technol 100(22):5519–5526

    Article  CAS  Google Scholar 

  11. Dawah A, Soliman A, Abomohra A, Battah M, Anees D (2015) Influence of alum on cyanobacterial blooms and water quality of earthen fish ponds. Environ Sci Pollut Res. doi:10.1007/s11356-015-4826-7

    Google Scholar 

  12. Zhou W, Min M, Li Y, Hu B, Ma X, Cheng Y, Liu Y, Chen P, Ruan R (2012) A hetero-photoautotrophic two-stage cultivation process to improve wastewater nutrient removal and enhance algal lipid accumulation. Bioresour Technol 110:448–455

    Article  CAS  Google Scholar 

  13. Tu R, Jin W, Xi T, Yang Q, Han S, Abomohra A (2015) Effect of static magnetic field on the oxygen production of Scenedesmus obliquus cultivated in municipal wastewater. Water Res. doi:10.1016/j.watres.2015.07.039

    Google Scholar 

  14. Abomohra A, Wagner M, El-Sheekh M, Hanelt D (2013) Lipid and total fatty acid productivity in photoautotrophic fresh water microalgae: screening studies towards biodiesel production. J Appl Phycol 25(4):931–936

    Article  CAS  Google Scholar 

  15. Kessler E, Czygan FC (1970) Physiologische und biochemische Beiträge zur Taxonomie der Gattung Chlorella. Arch Mikrobiol 70:211–216

    Article  CAS  Google Scholar 

  16. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226(1):497–509

    CAS  Google Scholar 

  17. Kaczmarzyk D, Fulda M (2010) Fatty acid activation in Cyanobacteria mediated by acyl-acyl carrier protein synthetase enables fatty acid recycling. Plant Physiol 152(3):1598–1610

    Article  CAS  Google Scholar 

  18. Elliott LG, Feehan C, Laurens LML, Pienkos PT, Darzins A, Posewitz MC (2012) Establishment of a bioenergy-focused microalgal culture collection. Algal Res 1:102–113

    Article  Google Scholar 

  19. El-Sheekh M, Abomohra A, Hanelt D (2013) Optimization of biomass and fatty acid productivity of Scenedesmus obliquus as a promising microalga for biodiesel production. World J Microbiol Biotechnol 29:915–922

    Article  CAS  Google Scholar 

  20. Orpez R, Martinez ME, Hodaifa G, Yousfi FE, Jbari N, Sanchez S (2009) Growth of the microalga Botryococcus braunii in secondarily treated sewage. Desalination 246:625–630

    Article  CAS  Google Scholar 

  21. Aravantinou A, Theodorakopoulos M, Manariotis I (2013) Selection of microalgae for wastewater treatment and potential lipids production. Bioresour Technol 147:130–134

    Article  CAS  Google Scholar 

  22. Gupta S, Ansari F, Shriwastav A, Sahoo N, Rawat I, Bux F (2016) Dual role of Chlorella sorokiniana and Scenedesmus obliquus for comprehensive wastewater treatment and biomass production for bio-fuels. J Cleaner Prod 115:255–264

    Article  CAS  Google Scholar 

  23. Ji M, Yun H, Park Y, Kabra A, Oh I, Choi J (2015) Mixotrophic cultivation of a microalga Scenedesmus obliquus in municipal wastewater supplemented with food wastewater and flue gas CO2 for biomass production. J Environ Manag 159:115–120

    Article  CAS  Google Scholar 

  24. Zhang C, Zhang Y, Zhuang B, Zhou X (2014) Strategic enhancement of algal biomass, nutrient uptake and lipid through statistical optimization of nutrient supplementation in coupling Scenedesmus obliquus-like microalgae cultivation and municipal wastewater treatment. Bioresour Technol 171:71–79

    Article  CAS  Google Scholar 

  25. Shen Q, Jiang J, Chen L, Cheng L, Xu X, Chen H (2015) Effect of carbon source on biomass growth and nutrients removal of Scenedesmus obliquus for wastewater advanced treatment and lipid production. Bioresour Technol 190:257–263

    Article  CAS  Google Scholar 

  26. Voltolina D, Corderoieves B, Nieves M, Soto LP (1999) Growth of Scenedesmus sp. in artificial wastewater. Bioresour Technol 68:265–268

    Article  CAS  Google Scholar 

  27. Pilli S, Bhunia P, Yan S, LeBlanc R, Tyagi R, Surampalli R (2011) Ultrasonic pretreatment of sludge: a review. Ultrason Sonochem 18:1–18

    Article  CAS  Google Scholar 

  28. Ryu B, Kim EJ, Kim H, Kim J, Choi Y, Yang J (2014) Simultaneous treatment of municipal wastewater and biodiesel production by cultivation of Chlorella vulgaris with indigenous wastewater bacteria. Biotechnol Bioprocess Eng 19(2):201–210

    Article  CAS  Google Scholar 

  29. Li Y, Chen YF, Chen P, Min M, Zhou W, Martinez B, Zhu J, Ruan R (2011) Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresour Technol 102(8):5138–5144

    Article  CAS  Google Scholar 

  30. Diaz MJ, Madejón E, López F, López R, Cabrera F (2002) Optimization of the rate vinasse/grape marc for co-composting process. Process Biochem 37(10):1143–1150

    Article  CAS  Google Scholar 

  31. Barbosa MJ, Albrecht M, Wijffels RH (2003) Hydrodynamic stress and lethal events in sparged microalgae cultures. Biotechnol Bioeng 83:112–120

    Article  CAS  Google Scholar 

  32. Sitanggang AB, Wu H, Wang SS, Ho Y (2010) Effect of pellet size and stimulating factor on the glucosamine production using Aspergillus sp. BCRC 31742. Bioresour Technol 101(10):3595–3601

    Article  CAS  Google Scholar 

  33. Chen F, Johns MR (1991) Effect of C/N ratio and aeration on the fatty acid composition of heterotrophic Chlorella sorokiniana. J Appl Phycol 3(3):203–209

    Article  CAS  Google Scholar 

  34. Saad N, Abdeshahian P, Kalil MS, Yusoff WW, Abdul Hamid A (2014) Optimization of aeration and agitation rate for lipid and gamma linolenic acid production by Cunninghamella bainieri 2A1 in submerged fermentation using response surface methodology. Sci World J 2014:280146

    Article  Google Scholar 

  35. Fan KW, Jiang Y, Faan YW, Chen F (2007) Lipid characterization of Mangrove thraustochytrid Schizochytrium mangrovei. J Agric Food Chem 55:2906–2910

    Article  CAS  Google Scholar 

  36. Robinson SP, Portis AR (1989) Ribulose-1,5-bisphosphate carboxylase/oxygenase activase protein prevents the in vitro decline in activity of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Physiol 90(3):968–971

    Article  CAS  Google Scholar 

  37. Yoo C, Jun SY, Lee JY, Ahn CY, Oh HM (2010) Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour Technol 101(1):71–74

    Article  Google Scholar 

  38. Damiani MC, Popovich CA, Constenla D, Leonardi PI (2010) Lipid analysis in Haematococcus pluvialis to assess its potential use as a biodiesel feedstock. Bioresour Technol 101(11):3801–3807

    Article  CAS  Google Scholar 

  39. EN 14214:2008+A1 (2009) Automotive fuels. Fatty acid methyl esters (FAME) for diesel engines. Requirements and test methods. British Standards, ISBN 978 0 580 70781 0

  40. Song M, Pei H, Hu W, Ma G (2013) Evaluation of the potential of 10 microalgal strains for biodiesel production. Bioresour Technol 141:245–251

    Article  CAS  Google Scholar 

  41. Ma Y, Wang Z, Yu C, Yin Y, Zhou G (2014) Evaluation of the potential of 9 Nannochloropsis strains for biodiesel production. Bioresour Technol 167:503–509

    Article  CAS  Google Scholar 

  42. Stournas S, Lois E, Serdari A (1995) Effects of fatty acid derivatives on the ignition quality and cold flow of diesel fuel. J Am Oil Chem Soc 72:433–437

    Article  CAS  Google Scholar 

  43. Knothe G (2006) Analyzing biodiesel: standards and other methods. J Am Oil Chem Soc 83:823–833

    Article  CAS  Google Scholar 

  44. Knothe G (2008) “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuels 22:1358–1364

    Article  CAS  Google Scholar 

  45. Hoekman SK, Broch A, Robbins C, Ceniceros E, Natarajan M (2012) Review of biodiesel composition, properties, and specifications. Renew Sustain Energy Rev 16:143–169

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the anonymous reviewers for suggesting insightful comments which led to a much improved manuscript. Financial support from Open Project of State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Project number HCK201508) is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbiao Jin.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, SF., Jin, W., Tu, R. et al. Optimization of aeration for biodiesel production by Scenedesmus obliquus grown in municipal wastewater. Bioprocess Biosyst Eng 39, 1073–1079 (2016). https://doi.org/10.1007/s00449-016-1585-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-016-1585-x

Keywords

Navigation