Skip to main content
Log in

Algae and waste water

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Microalgal cultures offer an interesting alternative for waste water treatment (urban, industrial or agricultural effluents) because they provide a tertiary biotreatment coupled with the production of potentially valuable biomass, which can be used for several purposes. We review the main abiotic, biotic and operative factors playing a role in the cultivation of microalgae. Various types of bioreactors are scrutinized keeping in view that the main limitation upon the type of usable bioreactors is the enormous volume of water to be treated. The choice of suitable microalgae and cyanobacteria is examined in terms of productivity and easiness of harvesting. The possible alternatives to harvesting are also reviewed with an emphasis on immobilized systems. Finally, the need for more research and development is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abeliovich A (1986) Algae in wastewater oxidation ponds. In: Richmond A (ed.), Handbook of Microalgal Mass Culture. CRC Press, Boca Raton, 331–338.

    Google Scholar 

  • Becker EW (1986) Nutritional properties of microalgae: Potentials and constraints. In: Richmond A (ed.), Handbook of Microalgal Mass Culture. CRC Press, Boca Raton, 339–419.

    Google Scholar 

  • Benemann JR (1989) The future of microalgal biotechnology. In: Cresswell RC, Rees TAV, Shah N (eds), Algal and Cyanobacterial Biotechnology, Longman Scientific and Technical, Harlow, 317–337.

    Google Scholar 

  • Callegari J-P (1989) Feu vert pour les microalgues. Biofutur 76: 25–40.

    Google Scholar 

  • Chevalier P, de la Noüe J (1985) Wastewater nutrient removal with microalgae immobilized in carrageenan. Enz. Microb. Techn. 7: 621–624.

    Google Scholar 

  • de la Noüe J, De Pauw N (1988). The potential of microalgal biotechnology: A review of production and uses of microalgae. Biotech. Adv. 6: 725–770.

    Google Scholar 

  • de la Noüe J, Proulx D (1988) Biological tertiary treatment of urban wastewater with chitosan-immobilizedPhormidium. Appl. Microbiol. Biotechnol. 29: 292–297.

    Google Scholar 

  • de la Noüe J, Proulx D, Guay R, Pouliot Y, Turcotte J (1986) Algal biomass production from wastewaters and swine manure: nutritional and safety aspects. In: Moo-Young M, Gregory KF (eds), Microbial Biomass Protein, Elsevier Applied Science, London, 141–145.

    Google Scholar 

  • de la Noüe J, Chevalier P, Proulx D (1990) Effluent treatment with immobilized microalgae and cyanobacteria: a critical assessment. In: Tyagi RD, Vembu K (eds), Wastewater Treatment by Immobilized Cells, CRC Press, Boca Raton, 143–152.

    Google Scholar 

  • De Pauw N, Persoone G (1988) Micro-algae for aquaculture. In: Borowitzka MA, Borowitzka LJ (eds), Micro-algal Biotechnology, Cambridge University Press, New York, 197–221.

    Google Scholar 

  • Etnier C, Guterstam B (eds) (1991) Ecological engineering for wastewater treatment. Proceedings of the International Conference at Stensund Folk College, Sweden, Bokskogen, Gothenburg, Sweden, 365 pp.

  • Freeman M (1982) Air and Water Pollution Control, a Benefit-Cost assessment. J. Wiley & Sons, New York.

    Google Scholar 

  • Garbisu C, Gil JM, Bazin MJ, Hall DO, Serra JL (1991) Removal of nitrate from water by foam-immobilizedPhormidium laminosum in batch and continuous-flow bioreactors. J. Appl. Phycol. 3: 1–14.

    Google Scholar 

  • Guterstam B, Todd J (1990) Ecological engineering for wastewater treatment and its application in New England and Sweden. Ambio 19: 173–175.

    Google Scholar 

  • Hashimoto S, Furukawa K (1989) Nutrient removal from secondary effluent by filamentous algae. J. Ferm. Bioeng 67: 62–69.

    Google Scholar 

  • Huntley ME, Nonomura AM, de la Noüe J (1989) Algal culture systems. In: Huntley ME, (ed.), Biotreatment of Agricultural Wastewater. CRC Press, Boca Raton, 111–130.

    Google Scholar 

  • Johnson DA, Weissman J, Goebel R (1988) An outdoor test facility for the large-scale production of microalgae. Solar Energy Research Institute, TP-231-3325, Colorado, 11 pp.

  • Lavoie A, de la Noüe J (1983) Harvesting microalgae with chitosan. J. World Mariculture Soc. 14: 685–694.

    Google Scholar 

  • Lavoie A, de la Noüe J (1985) Hyperconcentrated culture ofScenedesmus obliquus: a new approach for wastewater biological tertiary treatment? Wat. Res. 19: 1437–1442.

    Google Scholar 

  • Lincoln EP, Earle JFK (1990) Wastewater treatment with microalgae. In: Akatsuka (ed.), Introduction to Applied Phycology. SPB Academic Publ. The Hague, 429–446.

    Google Scholar 

  • Mara DD, Pearson H (1986) Artificial freshwater environment: waste stabilization ponds. In: Rehm H-J, Reed G (eds), Biotechnology Vol. 8, VCH Verlagsgesellschaft, Weinheim, 177–206.

  • Maurits la Rivière JW (1989) Threats to the world's water. Scientific American 261: 80–94.

    Google Scholar 

  • Metcalf, Eddy inc. (1979) Wastewater Engineering: Treatment Disposal Reuse. McGraw-Hill., Inc., Boston, 920 pp.

    Google Scholar 

  • Morales J, de la Noüe J, Picard G (1985) Harvesting marine microalgae species by chitosan flocculation. Aquacult. Eng. 4: 257–270.

    Google Scholar 

  • Morimura Y, Nihei T, Sasa T (1955) Outdoor bubbling culture of some unicellular algae. J. gen. appl. Microbiol. 1: 173–182.

    Google Scholar 

  • Myrand B, de la Noüe J (1982) Croissance individuelle et dynamique de population deDaphnia magna en culture dans les eaux usées traitées. Hydrobiologia 97: 167–177.

    Google Scholar 

  • Nigam BP, Ramanathan PK, Venkataraman LV (1980) Application of chitosan as a flocculant for the cultures of the green algae:Scenedesmus acutus. Arch. Hydrobiol. 88: 378–387.

    Google Scholar 

  • Oswald WJ (1963) High rate pond in waste disposal. Developments in Industrial Microbiol. 4: 112–119.

    Google Scholar 

  • Oswald WJ (1988a) The role of microalgae in liquid waste treatment and reclamation. In: Lembi CA, Waaland JR (eds), Algae and Human Affairs. Cambridge U.P., Cambridge, 255–281.

    Google Scholar 

  • Oswald WJ (1988b) Micro-algae and waste-water treatment. In: Borowitzka MA, Borowitzka LJ (eds), Micro-algal Biotechnology. Cambridge U.P., Cambridge, 305–328.

    Google Scholar 

  • Oswald WJ (1988c) Large-scale culture systems (engineering aspects). In Borowitzka MA, Borowitzka LJ (eds), Micro-algal Biotechnology. Cambridge U.P., Cambridge, 357–394.

    Google Scholar 

  • Oswald WJ, Gotaas HB (1957) Photosynthesis in sewage treatment. Trans. Am. Soc. Civ. Eng. 122: 73–105.

    Google Scholar 

  • Pantastico JB (1987) Algal production in wastewater: progress and problems. Arch. Hydrobiol. 28: 105–121.

    Google Scholar 

  • Phang S-M (1990) Algal production from agro-industrial and agricultural wastes in Malaysia. Ambio 19: 415–418.

    Google Scholar 

  • Pouliot Y, de la Noüe J (1985) Mise au point d'une usine-pilote d'épuration des eaux usées par production de micro-algues. Rev. Frçse Sci. de l'Eau. 4: 207–222.

    Google Scholar 

  • Proulx D, de la Noüe J (1985) Harvesting ofDaphnia magna from urban tertiary effluents. Wat. Res. 19: 1319–1324.

    Google Scholar 

  • Rai LC, Gaur JP, Kumar HD (1981) Phycology and heavy metal pollution. Biol. Rev. 56: 99–151.

    Google Scholar 

  • Redalje DG, Duerr EO, de la Noüe J, Mayzaud P, Nonomura AM, Cassin RC (1989) Algae as ideal waste removers: biochemical pathways. In: Huntley ME (ed.), Biotreatment of Agricultural Wastewater. CRC Press, Boca Raton, 91–110.

    Google Scholar 

  • Richmond A (ed.), (1986) Handbook of Microalgal Mass Culture. CRC Press, Boca Raton, 528 pp.

    Google Scholar 

  • Richmond A, Becker EW (1986) Technological aspects of mass cultivation — a general outline. In: Richmond A (ed.), Handbook of Microalgal Mass Culture. CRC Press, Boca Raton, 245–263.

    Google Scholar 

  • Talbot P, de la Noüe J (1988) Evaluation ofPhormidium bohneri for solar biotechnology. In: Stadler T, Mollion J, Verdus MC, Karamanos Y, Morvan H, Christiaen D (eds), Algal Biotechnology. Elsevier, London, 403–411.

    Google Scholar 

  • Talbot P, Lencki RW, de la Noüe J (1990) Carbon dioxide absorption characterization of a bioreactor for biomass production ofPhomidium bohneri: comparative study of three types of diffuser. J. Appl. Phycol. 2: 341–350.

    Google Scholar 

  • Talbot P, Thébault J-M, Dauta A, de la Noüe J (1991) A comparative study and mathematical modeling of temperature, light and growth of three microalgae potentially useful for wastewater treatment. Wat. Res. 25: 465–472.

    Google Scholar 

  • Tarifeño-Silva E, Kawasaki LY, Yu DP, Gordon MS, Chapman DJ (1982) Aquacultural approaches to recycling of dissolved nutrients in secondarily treated domestic wastewaters. II Biological productivity of artificial food chains. Wat. Res. 16: 51–57.

    Google Scholar 

  • Travieso L, Benitez F, Dupeiron R (1992) Sewage treatment using immobilized microalgae. Bioresource Techn. 40: 183–187.

    Google Scholar 

  • Tyagi RD, Vembu K (eds) (1990) Wastewater Treatment by Immobilized mobilized Cells. CRC Press, Boca Raton, 281 pp.

    Google Scholar 

  • Yang PY, Nagano SY (1985) Algal biomass raceway system for partially treated swine wastewater in the tropics. Transactions of the ASAE. 2: 542–546.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de la Noüe, J., Laliberté, G. & Proulx, D. Algae and waste water. J Appl Phycol 4, 247–254 (1992). https://doi.org/10.1007/BF02161210

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02161210

Key words

Navigation