Skip to main content
Log in

Analyzing biodiesel: standards and other methods

  • Review
  • Published:
Journal of the American Oil Chemists' Society

Abstract

Biodiesel occupies a prominent position among the alternatives to conventional petrodiesel fuel owing to various technical and economic factors. It is obtained by reacting the parent vegetable oil or fat with an alcohol )transesterification) in the presence of a catalyst to give the corresponding monoalkyl esters, which are defined as biodiesel. Because of the nature of the starting material, the production process, and subsequent handling, various factors can influence biodiesel fuel quality. Fuel quality issues are commonly reflected in the contaminants or other minor components of biodiesel. This work categorizes both the restricted species in biodiesel and the physical properties prescribed by the standards, and details the standard reference methods to determine them as well as other procedures. Other aspects of biodiesel analysis, including production monitoring and assessing biodiesel/petrodiesel blends, are also addressed. The types of analyses include chromatographic, spectroscopic, physical properties-based, and wet chemical methods. The justifications for specifications in standards are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Knothe, G., J. Van Gerpen, and J. Krahl (eds.), The Biodiesel Handbook, AOCS Press, Champaign, Illinois, 2005, 302 pp.

    Google Scholar 

  2. Mittelbach, M., and C. Remschmidt, Biodiesel—The Comprehensive Handbook, published by M. Mittelbach, Karl-Franzens-Universität Graz, Graz, Austria, 2004.

    Google Scholar 

  3. Knothe, G., Analytical Methods Used in the Production and Fuel Quality Assessment of Biodiesel, Trans. ASAE 44:193–200 (2001).

    CAS  Google Scholar 

  4. Mittelbach, M., Diesel Fuel Derived from Vegetable Oils, VI: Specifications and Quality Control of Biodiesel, Bioresour. Technol. 56:7–11 (1996).

    Article  CAS  Google Scholar 

  5. Komers, K., R. Stloukal, J. Machek, F. Skopal, and A. Komersová, Biodiesel Fuel from Rapeseed Oil, Methanol, and KOH. Analytical Methods in Research and Production, Fett/Lipid 100:507–512 (1998).

    Article  CAS  Google Scholar 

  6. Freedman, B., W.F. Kwolek, and E.H. Pryde, Quantitation in the Analysis of Transesterified Soybean Oil by Capillary Gas Chromatography, J. Am. Oil Chem. Soc. 63:1370–1375 (1986).

    CAS  Google Scholar 

  7. Foglia, T.A., and K.C. Jones, Quantitation of Neutral Lipid Mixtures Using High Performance Liquid Chromatography with Light Scattering Detection, J. Liq. Chromatogr. Relat. Technol. 20:1829–1838 (1997).

    CAS  Google Scholar 

  8. Schober, S., I. Seidl, and M. Mittelbach, Ester Content Evaluation in Biodiesel from Animal Fats and Lauric Oils, Eur. J. Lipid Sci. Technol. 108:309–314 (2006).

    Article  CAS  Google Scholar 

  9. Freedman, B., E.H. Pryde, and W.F. Kwolek, Thin Layer Chromatography/Flame Ionization Analysis of Transesterified Vegetable Oils, J. Am. Oil Chem. Soc. 61:1215–1220 (1984).

    Article  CAS  Google Scholar 

  10. Cvengroŝ, J., and Z. Cvengroŝová, Quality Control of Rapeseed Oil Methyl Esters by Determination of Acyl Conversion, ——Ibid.d. 71:1349–1352 (1994).

    Article  Google Scholar 

  11. Cvengroŝová, Z., J. Cvengroŝ, and M. Hronec, Rapeseed Oil Ethyl Esters as Alternative Fuels and Their Quality Control, Petrol. Coal 39:36–40 (1997).

    Google Scholar 

  12. Mariani, C., P. Bondioli, S. Venturini, and E. Fedeli, Vegetable Oil Derivatives as Diesel Fuel. Analytical Aspects. Note 1: Determination of Methyl Esters, Mono-, Di-, and Triglycerides, Riv. Ital. Sostanze Grasse 69:549–551 (1991).

    Google Scholar 

  13. Plank, C., and E. Lorbeer, Quality Control of Vegetable Oil Methyl Esters Used as Diesel Fuel Substitutes: Quantitative Determination of Mono-, Di-, and Triglyccrides by Capillary GC, J. High Resolut. Chromatogr. 16:609–612 (1992).

    Article  Google Scholar 

  14. Mittelbach, M., Diesel Fuel Derived from Vegetable Oils, V [1]: Gas Chromatographic Determination of Free Glycerol in Transesterified Vegetable Oils, Chromatographia 37:623–626 (1993).

    Article  CAS  Google Scholar 

  15. Mittelbach, M., G. Roth, and A. Bergmann, Simultaneous Gas Chromatographic Determination of Methanol and Free Glycerol in Biodiesel, ——Ibid.d. 42:431–434 (1996).

    Article  CAS  Google Scholar 

  16. Bondioli, P., C. Mariani, A. Lanzani, and E. Fedeli, Vegetable Oil Derivatives as Diesel Fuel Substitutes. Analytical Aspects. Note 2: Determination of Free Glycerol, Riv. Ital. Sostanze Grasse 69:7–9 (1992).

    CAS  Google Scholar 

  17. Bondioli, P., C. Mariani, E. Fedeli, A.M. Gomez, and S. Veronese, Vegetable Oil Derivatives as Diesel Fuel Substitutes. Analytical Aspects. Note 3: Determination of Methanol, ——Ibid.d. 69:467–469 (1992).

    CAS  Google Scholar 

  18. Plank, C., and E. Lorbeer, Simultaneous Determination of Glyccrol, and Mono-, Di-, and Triglycerides in Vegetable Oil Methyl Esters by Capillary Gas Chromatography, J. Chromatogr. A 697:461–468 (1995).

    Article  CAS  Google Scholar 

  19. Foglia, T.A., K.C. Jones, A. Nuñez, J.G. Phillips, and M. Mittelbach, Comparison of Chromatographic Methods for the Determination of Bound Glycerol in Biodiesel, Chromatographia 60:305–311 (2004).

    Article  CAS  Google Scholar 

  20. Trathnigg, B., and M. Mittelbach, Analysis of Triglyceride Methanolysis Mixtures Using Isocratic HPLC with Density Detection, J. Liq. Chromatogr. 13:95–105 (1990).

    CAS  Google Scholar 

  21. Bailer, J., and K. de Hueber, Determination of Saponifiable Glycerol in “Bio-Diesel”, Fresenius' J. Anal. Chem. 340:186 (1991).

    Article  CAS  Google Scholar 

  22. Lozano, P., N. Chirat, J. Graille and D. Pioch, Measurement of Free Glycerol in Biofuels, ——Ibid.d. 354:319–322 (1996).

    CAS  Google Scholar 

  23. Anon., Glycerine, Chem. Mark. Rep. 263(21):12 (May 26, 2003).

  24. Bondioli, P., and L. Della Bella, An Alternative Spectrophotometric Method for the Determination of Free Glycerol in Biodiesel, Eur. J. Lipid Sci. Technol. 107:153–157 (2005).

    Article  CAS  Google Scholar 

  25. Holãapek, M., P. Jandera, J. Fischer, and B. Proke%, Analytical Monitoring of the Production of Biodiesel by High-Performance Liquid Chromatography with Various Detection Methods, J. Chromatogr. A 858:13–31 (1999).

    Article  Google Scholar 

  26. Holãapek, M., P. Jandera, and J. Fischer, Analysis of Acylglycerols and Methyl Esters of Fatty Acids in Vegetable Oils and Biodiesel, Crit. Rev. Anal. Chem. 31:53–56 (2001).

    Article  Google Scholar 

  27. Darnoko, D., M. Cheryan, and E.G. Perkins, Analysis of Vegetable Oil Transesterification Products by Gel Permeation Chromatography, J. Liq. Chromatogr. Relat. Technol. 23:2327–2335 (2000).

    Article  CAS  Google Scholar 

  28. Lechner, M., C. Bauer-Plank, and E. Lorbeer, Determination of Acylglycerols in Vegetable Oil Methyl Esters by On-line Normal Phase LC-GC, J. High Resolut. Chromatogr. 20:581–585 (1997).

    Article  CAS  Google Scholar 

  29. Knothe, G., Structure Indices in FA Chemistry. How Relevant Is the Iodine Value? J. Am. Oil Chem. Soc. 79:847–854 (2002).

    Article  CAS  Google Scholar 

  30. Mahajan, S., S.K. Konar, and D.G.B. Boocock, Determining the Acid Number of Biodiesel, ——Ibid.d. 83:567–570 (2006).

    Article  CAS  Google Scholar 

  31. Komers, K., F. Skopal, and R. Stloukal, Determination of the Neutralization Number for Biodiesel Fuel Production, Fett/Lipid 99:52–54 (1997).

    Article  CAS  Google Scholar 

  32. Edlund, M., H. Visser, and P. Heitland, Analysis of Biodiesel by Argon-Oxygen Mixed-Gas Inductively Coupled Plasma Optical Emission Spectrometry, J. Anal. At. Spectrom. 17:232–235 (2002).

    Article  CAS  Google Scholar 

  33. Knothe, G., and K.R. Steidley, Kinematic Viscosity of Biodiesel Fuel Components and Related Compounds. Influence of Compound Structure and Comparison to Petrodiesel Fuel Components, Fuel 84:1059–1065 (2005).

    Article  CAS  Google Scholar 

  34. Knothe, G., A. Matheaus, and T.W. Ryan III, Cetane Numbers of Branched and Straight-chain Fatty Esters Determined in an Ignition Quality Tester, Fuel 82:971–975 (2003).

    Article  CAS  Google Scholar 

  35. AOCS, Official Methods and Recommended Practices of the AOCS, 5th edn., AOCS Press, Champaign, Illinois, 1997.

    Google Scholar 

  36. Plank, C., and E. Lorbeer, Analysis of Free and Esterified Sterols in Vegetable Oil Methyl Esters by Capillary GC, J. High Resolut. Chromatogr. 16:483–487 (1993).

    Article  CAS  Google Scholar 

  37. Plank, C., and E. Lorbeer, Minor Components in Vegetable Oil Methyl Esters I: Sterols in Rapeseed Oil Methyl Ester, Fett Wiss. Technol. 96:379–386 (1994).

    Article  CAS  Google Scholar 

  38. Plank, C., and E. Lorbeer, On-line Liquid Chromatography-Gas Chromatography for the Analysis of Free and Esterified Sterols in Vegetable Oil Methyl Esters Used as Diesel Fuel Substitutes, J. Chromatogr. A 683:95–104 (1994).

    Article  CAS  Google Scholar 

  39. Gelbard, G., O. Brès, R.M. Vargas, F. Vielfaure, and U.F. Schuchard, 1H Nuclear Magnetic Resonance Determination of the Yield of the Transesesterification of Rapeseed Oil with Methanol, J. Am. Oil Chem. Soc. 72:1239–1241 (1995).

    Article  CAS  Google Scholar 

  40. Neto, P.R.C., M.S.B. Caro, L.M. Mazzuco, and M. da Graça Nascimento, Quantification of Soybean Oil Ethanolysis with 1H NMR, ——Ibid.d. 81:1111–1114 (2004).

    Article  Google Scholar 

  41. Dimmig, T., W. Radig, C. Knoll, and T. Dittmar, 13C-NMR-Spektroskopie zur Bestimmung von Umsatz und Reaktionskinetik der Umesterung von Triglyceriden zu Methylestern [13C-NMR Spectroscopic Determination of the Conversion and Reaction Kinetics of Transesterification of Triglycerols to Methyl Esters], Chem. Tech. (Leipzig) 51:326–329 (1999).

    CAS  Google Scholar 

  42. Knothe, G., Rapid Monitoring of Transesterification and Assessing Biodiesel Fuel Quality by NIR Spectroscopy Using a Fiber-Optic Probe, J. Am. Oil Chem. Soc. 76:795–800 (1999).

    CAS  Google Scholar 

  43. Knothe, G., Monitoring the Turnover of a Progressing Transesterification Reaction by Fiber-Optic NIR Spectroscopy with Correlation to 1H NMR Spectroscopy, ——Ibid.d. 77:489–493 (2000).

    Article  CAS  Google Scholar 

  44. Dubé, M.A., S. Zheng, D.D. McLean, and M. Kates, A Comparison of Attenuated Total Reflectance-FTIR Spectroscopy and GPC for Monitoring Biodiesel Production, ——Ibid.d. 81:599–603 (2004).

    Google Scholar 

  45. Siatis, N.G., A.C. Kimbaris, C.S. Pappas, P.A. Tarantilis, and M.G. Polissiou, Improvement of Biodiesel Production Based on the Application of Ultrasound: Monitoring of the Procedure by FTIR Spectroscopy, ——Ibid.d. 83:53–57 (2006).

    Article  CAS  Google Scholar 

  46. Zagonel, G.F., P. Peralta-Zamora, and L.P. Ramos, Multivariate Monitoring of Soybean Oil Ethanolysis by FTIR, Talanta 63:1021–1025 (2004).

    Article  CAS  Google Scholar 

  47. De Filippis, P., C. Giavarini, M. Scarsella, and M. Sorrentino, Transesterification Processes for Vegetable Oils: A Simple Control Method of Methyl Ester Content, J. Am. Oil Chem. Soc. 72:1399–1404 (1995).

    Article  Google Scholar 

  48. Sadeghi-Jorabchi, H., V.M.E. Wood, F. Jeffery, A. Bruster-Davics, N. Loh, and D. Coombs, Estimation of Biodiesel in Lubricating Oil Using Fourier Transform Infrared Spectroscopy Combined with a Mid-Infrared Fibre Optic Probe, Spectrosc. Europe 6:16, 18,20–21 (1994).

    CAS  Google Scholar 

  49. Siekmann, R.W., G.H. Pischinger, D. Blackman, and L.D. Carvalho, The Influence of Lubricant Contamination by Methyl Esters of Plant Oils on Oxidation Stability and Life, Proc. Int. Conf. Plant and Vegetable Oils as Fuels, published by ASAE, St. Joseph, Michigan, ASAE Publication 4-82, pp. 209–217 (1982).

    Google Scholar 

  50. Vähäoja, P., J. Närhi, T. Kuokkanen, O. Naatus, J. Jalonen, and S. Lahdelma, An Infrared Spectroscopic Method for Quantitative Analysis of Fatty Alcohols and Fatty Acid Esters in Machinery Oils, Anal. Bioanal. Chem. 383:305–311 (2005).

    Article  Google Scholar 

  51. Bírová, A., E. Ŝvajdlenka, J. Cvengroŝ, and V. Dostálíková, Determination of the Mass Fraction of Methyl Esters in Mixed Fuels, Eur. J. Lipid Sci. Technol. 104:271–277 (2002).

    Article  Google Scholar 

  52. Pimentel, M.F., G.M.G.S. Ribeiro, R.S. da Cruz, L. Stragevitch, J.G.A. Pacheco Filho, and L.S.G. Teixeira, Determination of Biodiesel Content When Blended with Mineral Diesel Fuel Using Infrared Spectroscopy and Multivariate Calibration, Microchem. J. 82:201–206 (2006).

    Article  Google Scholar 

  53. Knothe, G., Determining the Blend Level of Mixtures of Biodiesel with Conventional Diesel Fuel by Fiber-Optic NIR Spectroscopy and 1H Nuclear Magnetic Resonance Spectroscopy, J. Am. Oil Chem. Soc. 78:1025–1028 (2001).

    Article  CAS  Google Scholar 

  54. Foglia, T.A., K.C. Jones, and J.G. Phillips, Determination of Biodiesel and Triacylglycerols in Diesel Fuel by LC, Chromatographia 62:115–119 (2005).

    Article  CAS  Google Scholar 

  55. Kamifski, M., E. Gilgenast, A. Przyjazny, and G. Romanik, Procedure for and Results of Simultaneous Determination of Aromatic Hydrocarbons and Fatty Acid Methyl Esters in Diesel Fuels by High-Performance Liquid Chromatography, J. Chromatogr. A 1122:153–160 (2006).

    Article  Google Scholar 

  56. Bondioli, P., A. Lanzani, E. Fedeli, M. Sala, and S. Veronese, Vegetable Oil Derivatives as Diesel Fuel Substitutes. Analytical Aspects. Note 4: Determination of Biodiesel and Diesel Fuel in Mixture, Riv. Ital. Sostanze Grasse 71:287–289 (1994).

    CAS  Google Scholar 

  57. Bondioli, P., and L. Della Bella, The Evaluation of Biodiesel Quality in Commercial Blends with Diesel Fuel, ——Ibid.d. 80:173–176 (2003).

    Google Scholar 

  58. Tat, M.E., and J.H. Van Gerpen, Biodiesel Blend Detection with a Fuel Composition Sensor, Appl. Eng. Agricult. 19:125–131 (2003).

    Google Scholar 

  59. Munack, A., J. Krahl, and H. Speckmann, A Fuel Sensor for Biodiesel, Fossil Diesel Fuel, and Their Blends, ASAE Paper No. 02-6081 (2002).

  60. Munack, A., and J. Krahl, Erkennung des RME-Betriebs mittels eines Biodiesel-Kraftstoffsensors (Identifying Use of RME with a Biodiesel Fuel Sensor), Landbauforsch. Völkenrode Sonderh. (Special Issue) 257 (2003).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Knothe.

About this article

Cite this article

Knothe, G. Analyzing biodiesel: standards and other methods. J Amer Oil Chem Soc 83, 823–833 (2006). https://doi.org/10.1007/s11746-006-5033-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-006-5033-y

Key Words

Navigation