Skip to main content

Advertisement

Log in

Microalga, Acutodesmus obliquus KGE 30 as a potential candidate for CO2 mitigation and biodiesel production

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this study, the effect of flue gas CO2 on growth, lipid production, and fatty acid composition of a green microalga Acutodesmus obliquus KGE 30 was investigated. The highest growth rate (0.46 g L−1 and μmax = 1.09 day−1), total inorganic carbon removal (95.9 mg L−1), and lipid productivity (20.1 mg L−1 day L−1) was obtained at 14.1 % CO2 after 4 days of cultivation. In a semicontinuous batch reactor, the highest biomass production (1.19 g L−1) was achieved after 12 days with continuous injection of flue gas CO2. Compared with synthetic CO2, fatty acid methyl ester analysis showed that the amount of unsaturated fatty acid increased by 19.2 % with 14.1 % flue gas CO2. The application of flue gas CO2 improved biomass production and lipid productivity in A. obliquus. The current investigation demonstrated that the use of flue gas CO2 could reduce the cost of microalgae biomass production for better biofuel generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abou-Shanab RAI, Matter IA, Kim SN, Oh UK, Choi J, Jeon B-H (2011) Characterization and identification of lipid-producing microalgae species isolated from a freshwater lake. Biomass and Bioenergy 35:3079–3085

  • Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  • American Public Health Association (APHA) (1998) Methods for biomass production. In: Clesceri LS, Greenberg AE, Eaton AD (eds) Standard methods for the examination of water and wastewater. 20th ed. American Public Health Association, Baltimore, p 1–548

  • Belarbi E-H, Molina E, Chisti Y (2000) A process for high yield and scalable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. Enzyme Microb Technol 26:516–529

    Article  CAS  Google Scholar 

  • Berenguel M, Rodriguez F, Acien FG, Garcia JL (2004) Model predictive control of pH in tubular photobioreactors. J Process Control 14(4):377–387

  • Bischoff HW, Bold HC (1963) Phycological Studies IV. Some soil algae from enchanted rock and related algal species. University of Texas Publication 6318(4):1–95

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Phys 37:911–917

    Article  CAS  Google Scholar 

  • Cagliari A, Margis R, Maraschin FS, Turchetto-Zolet AC, Loss G, Margis-Pinheiro M (2011) Biosynthesis of triacylglycerols (TAGs) in plants and algae. Int J Plant Biol 2:40–52

    Article  CAS  Google Scholar 

  • Chinnasamy S, Ramakrishnan B, Bhatnagar A, Das KC (2009) Biomass production potential of a wastewater alga Chlorella vulgaris ARC 1 under elevated levels of CO2 and temperature. Intern J Molecular Sc 10(2):518–532

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  Google Scholar 

  • Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131

    Article  CAS  Google Scholar 

  • Chiu SY, Kao CY, Tsai MT, Ong SC, Chen CH, Lin CS (2009) Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour Technol 100:833–838

    Article  CAS  Google Scholar 

  • Chiu SY, Kao CY, Huang TT, Lin CJ, Ong SC, Chen CD, Chang JS, Lin CS (2011) Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures. Bioresource Technol 102:9135–9142

    Article  CAS  Google Scholar 

  • de Morais MG, Costa JAV (2007) Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energ Convers Manage 48:2169–2173

    Article  Google Scholar 

  • Doucha J, Straka F, Livansky K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17:403–412

    Article  Google Scholar 

  • Francisco EC, Neves DB, Jacob-Lopes E, Franco TT (2010) Microalgae as feedstock for biodiesel production: carbon dioxide sequestration, lipid production and biofuel quality. J Chem Technol Biotechnol 85:395–403

    Article  CAS  Google Scholar 

  • Ho SH, Kondo A, Hasunuma T, Chang JS (2013) Engineering strategies for improving the CO2 fixation and carbohydrate productivity of Scenedesmus obliquus CNW-N used for bioethanol fermentation. Bioresource Technol 143:163–171

    Article  CAS  Google Scholar 

  • Huertas IE, Lubian LM (1998) Comparative study of dissolved inorganic carbon utilization and photosynthetic responses in Nannochloris (Chlorophyceae) and Nannochloropsis (Eustigmatophyceae) species. Can J Bot 76:1104–1108

    CAS  Google Scholar 

  • Ji MK, Abou-Shanab RAI, Kim SH, Salama E, Lee SH, Kabra AN, Lee YS, Hong S, Jeon BH (2013) Cultivation of microalgae species in tertiary municipal wastewater supplemented with CO2 for nutrient removal and biomass production. Ecol Eng 58:142–148

    Article  Google Scholar 

  • Jiang LL, Luo SJ, Fan XL, Yang ZM, Guo RB (2011) Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2. Appl Energ 88:3336–3341

    Article  CAS  Google Scholar 

  • Jiang Y, Zhang W, Wang J, Chen Y, Shen S, Liu T (2013) Utilization of simulated flue gas for cultivation of Scenedsmus dimorphus. Bioresour Technol 128:359–364

  • John DM, Whitton BA, Brook AJ (2003) The freshwater algal flora of the British Isles an identification guide to freshwater and terrestrial algae. Cambridge University Press Cambridge, UK, pp 39–43

    Google Scholar 

  • Kao CY, Chen TY, Chang YB, Chiu TW, Lin HY, Chen CD, Chang JS, Lin CS (2014) Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp. Bioresource Technol 166:485–493

  • Kastanek F, Sabata S, Solcova O, Maleterova Y, Kastanek P, Branyikova I, Kuthan K, Zachleder V (2010) In-field experimental verification of cultivation of microalgae Chlorella sp. using the flue gas from a cogeneration unit as a source of carbon dioxide. Waste Manage Res 28:961–966

    Article  CAS  Google Scholar 

  • Kim G, Choi W, Lee CH, Lee K (2013) Enhancement of dissolved inorganic carbon and carbon fixation by green alga Scenedesmus sp. in the presence of alkanolamine CO2 absorbents. Biochem Eng J 78:18–23

    Article  CAS  Google Scholar 

  • Kumar K, Banerjee D, Das D (2014) Carbon dioxide sequestration from industrial flue gas by Chlorella sorokiniana. Bioresource Technol 152:225–233

    Article  CAS  Google Scholar 

  • Lepage G, Roy CC (1984) Improved recovery of fatty-acid through direct trans-esterification without prior extraction or purification. J Lipid Res 25:1391–1396

    CAS  Google Scholar 

  • Li FF, Yang ZH, Zeng R, Yang G, Chang X, Yan JB, Hou YL (2011) Microalgae capture of CO2 from actual flue gas discharged from a combustion chamber. Ind Eng Chem Res 50:6496–6502

    Article  CAS  Google Scholar 

  • Liang YN, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31:1043–1049

    Article  CAS  Google Scholar 

  • Luque R, Lovett JC, Datta B, Clancy J, Campelo JM, Romero AA (2010) Biodiesel as feasible petrol fuel replacement: a multidisciplinary overview. Energ Environ Sci 3:1706–1721

    Article  CAS  Google Scholar 

  • Markou G, Georgakakis D (2011) Cultivation of filamentous cyanobacteria(blue-green algae) in agro-industrial wastes and wastewaters: a review. Appl Energy 88(10):3389–3401

    Article  CAS  Google Scholar 

  • Nancucheo I, Johnson DB (2012) Acidophilic algae isolated from mine-impacted environments and their roles in sustaining heterotrophic acidophiles. Front Microbiol 3:325

    Article  Google Scholar 

  • Park WK, Yoo G, Moon M, Kim CW, Choi YE, Yang JW (2013) Phytohormone supplementation significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production. Appl Biochem Biotechnol 171:1128–1142

    Article  CAS  Google Scholar 

  • Praveenkumar R, Kim B, Choi E, Lee K, Park JY, Lee JS, Lee YC, Oh YK (2014) Improved biomass and lipid production in a mixotrophic culture of Chlorella sp. KR-1 with addition of coal-fired flue-gas. Bioresource Technol 171:500–505

    Article  CAS  Google Scholar 

  • Rittmann BE (2008) Opportunities for renewable bioenergy using microorganisms. Biotechnol Bioeng 100(2):203–212

    Article  CAS  Google Scholar 

  • Salama ES, Kabra AN, Ji MK, Kim JR, Min B, Jeon B-H (2014) Enhancement of microalgae growth and fatty acid content under the influence of phytohormones. Bioresour Technol 172:97–103

    Article  CAS  Google Scholar 

  • Sonnenberg R, Nolte AW, Tautz D (2007) An evaluation of LSU rDNA D1-D2 sequences for their use in species identification. Front Zool 4:1–12

    Article  Google Scholar 

  • Tang DH, Han W, Li PL, Miao XL, Zhong JJ (2011) CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresource Technol 102:3071–3076

    Article  CAS  Google Scholar 

  • Yun HS, Lee H, Park YT, Ji MK, Kabra AN, Jeon C, Jeon BH, Choi J (2014) Isolation of novel microalgae from acid mine drainage and its potentiaL APPLICATION for biodiesel production. Appl Biochem Biotech 173:2054–2064

    Article  CAS  Google Scholar 

  • Zeiler KG, Heacox DA, Toon ST, Kadam KL, Brown LM (1995) The use of microalgae for assimilation and utilization of carbon-dioxide from fossil fuel-fired power-plant flue-gas. Energ Convers Manage 36:707–712

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The project was financially supported by the Korea Institute of Science and Technology (Grant 2E26300) and the Ministry of Trade, Industry & Energy (industrial infrastructure program for fundamental technologies (N0000885).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaeyoung Choi.

Additional information

Responsible editor: Santiago V. Luis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, HS., Ji, MK., Park, YT. et al. Microalga, Acutodesmus obliquus KGE 30 as a potential candidate for CO2 mitigation and biodiesel production. Environ Sci Pollut Res 23, 17831–17839 (2016). https://doi.org/10.1007/s11356-016-6971-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6971-z

Keywords

Navigation