Skip to main content
Log in

Simultaneous treatment of municipal wastewater and biodiesel production by cultivation of Chlorella vulgaris with indigenous wastewater bacteria

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

This study examined the use of Chlorella vulgaris for the simultaneous bioremediation of municipal wastewater and production of biodiesel. We tested the effect of wastewater dilution on C. vulgaris growth in filtered and sterilized wastewater, sterilized wastewater, and untreated wastewater. Growth was the greatest in untreated wastewater, suggesting that certain wastewater components, such as bacteria, may promote microalgal growth. We confirmed the presence of beneficial bacteria by denaturing gradient gel electrophoresis analysis and inoculation of wastewater bacteria into microalgal cultures in artificial medium. Furthermore, we employed a semi-continuous cultivation process that successfully combined the advantages of indigenous bacteria with a high level of inoculum. Finally, cells grown in wastewater contained high levels of useful fatty acids. Collectively, our data suggest that it may be feasible to use wastewater-grown C. vulgaris biomass for simultaneous bioremediation and biodiesel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang, J., M. Xu, M. X. Zhang, Q. Hu, M. Sommerfeld, and Y. Chen (2011) Life-cycle analysis on biodiesel production from microalgae: Water footprint and nutrients balance. Bioresour. Technol. 102: 159–165.

    Article  CAS  Google Scholar 

  2. Chisti, Y. (2007) Biodiesel from microalgae. Biotechnol. Adv. 25: 294–306.

    Article  CAS  Google Scholar 

  3. Brennan, L. and P. Owende (2010) Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sust. Energ. Rev. 14: 557–577.

    Article  CAS  Google Scholar 

  4. Park, S. -J., Y. -E. Choi, E. J. Kim, W. -K. Park, C. W. Kim, and J. -W. Yang (2011) Serial optimization of biomass production using microalga Nannochloris oculata and corresponding lipid biosynthesis. Bioproc. Biosyst. Eng. 35: 3–9.

    Article  Google Scholar 

  5. Huang, G., F. Chen, D. Wei, X. Zhang, and G. Chen (2010) Biodiesel production by microalgal biotechnology. Appl. Energ. 87: 38–46.

    Article  CAS  Google Scholar 

  6. Halim, R., B. Gladman, M. K. Danquah, and P. A. Webley (2011) Oil extraction from microalgae for biodiesel production. Bioresour. Technol. 102: 178–185.

    Article  CAS  Google Scholar 

  7. Costa, J. A. V. and M. G. D. Morais (2011) The role of biochemical engineering in the production of biofuels from microalgae. Bioresour. Technol. 102: 2–9.

    Article  CAS  Google Scholar 

  8. Torzillo, G., B. Pushparaj, J. Masojidek, and A. Vonshak (2003) Biological constraints in algal biotechnology. Biotechnol. Bioproc. Eng. 8: 338–348.

    Article  CAS  Google Scholar 

  9. Jiang, L., S. Luo, X. Fan, Z. Yang, and R. Guo (2011) Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2. Appl. Energ. 88: 3336–3341.

    Article  CAS  Google Scholar 

  10. Craggs, R. J., P. J. McAuley, and V. J. Smith (1997) Wastewater nutrient removal by marine microalgae grown on a corrugated raceway. Water Res. 31: 1701–1707.

    Article  CAS  Google Scholar 

  11. Woertz, I., A. Feffer, T. Lundquist, and Y. Nelson (2009) Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. J. Environ. Eng-Asce. 135: 1115–1122.

    Article  CAS  Google Scholar 

  12. Lee, K. and C. -G. Lee (2001) Effect of light/dark cycles on wastewater treatments by microalgae. Biotechnol. Bioproc. Eng. 6: 194–199.

    Article  CAS  Google Scholar 

  13. Cho, S., T. T. Luong, D. Lee, Y. -K. Oh, and T. Lee (2011) Reuse of effluent water from a municipal wastewater treatment plant in microalgae cultivation for biofuel production. Bioresour. Technol. 102: 8639–8645.

    Article  CAS  Google Scholar 

  14. Li, Y., Y. -F. Chen, P. Chen, M. Min, W. Zhou, B. Martinez, J. Zhu, and R. Ruan (2011) Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresour. Technol. 102: 5138–5144.

    Article  CAS  Google Scholar 

  15. Sawayama, S., T. Minowa, Y. Dote, and S. Yokoyama (1992) Growth of the hydrocarbon-rich microalga Botryococcus braunii in secondarily treated sewage. Appl. Biochem. Biotech. 38: 135–138.

    CAS  Google Scholar 

  16. Su, Y., A. Mennerich, and B. Urban (2011) Municipal wastewater treatment and biomass accumulation with a wastewater born and settleable algal-bacterial culture. Water Res. 45: 3351–3358.

    Article  CAS  Google Scholar 

  17. Wang, L., Y. C. Li, P. Chen, M. Min, Y. F. Chen, J. Zhu, and R. R. Ruan (2010) Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour. Technol 101: 2623–2628.

    Article  CAS  Google Scholar 

  18. Johnson, M. B. and Z. Wen (2010) Development of an attached microalgal growth system for biofuel production. Appl. Microbiol. Biotechnol. 85: 525–534.

    Article  CAS  Google Scholar 

  19. Kim, M. K., J. W. Park, C. S. Park, S. J. Kim, K. H. Jeune, M. U. Chang, and J. Acreman (2007) Enhanced production of Scenedesmus spp. (green microalgae) using a new medium containing fermented swine wastewater. Bioresour. Technol. 98: 2220–2228.

    Article  CAS  Google Scholar 

  20. Chinnasamy, S., A. Bhatnagar, R. W. Hunt, and K. C. Das (2010) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour. Technol. 101: 3097–3105.

    Article  CAS  Google Scholar 

  21. Pittman, J. K., A. P. Dean, and O. Osundeko (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour. Technol. 102: 17–25.

    Article  CAS  Google Scholar 

  22. Munoz, R. and B. Guieyssea (2006) Algal-bacterial processes for the treatment of hazardous contaminants: A review. Water Res. 40: 2799–2815.

    Article  CAS  Google Scholar 

  23. De-Bashan, L. E. and Y. Bashan (2010) Immobilized microalgae for removing pollutants: Review of practical aspects. Bioresour. Technol. 101: 1611–1627.

    Article  CAS  Google Scholar 

  24. Dar, S. A., J. G. Kuenen, and G. Muyzer (2005) Nested PCR-denaturing gradient gel electrophoresis approach to determine the diversity of sulfate-reducing bacteria in complex microbial communities. Appl. Environ. Microb. 71: 2325–2330.

    Article  CAS  Google Scholar 

  25. Lim, S. L., W. L. Chu, and S. M. Phang (2010) Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresour. Technol. 101: 7314–7322.

    Article  CAS  Google Scholar 

  26. Allakhverdiev, S. I., A. Sakamoto, Y. Nishiyama, M. Inaba, and N. Murata (2000) Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiol. 123: 1047–1056.

    Article  CAS  Google Scholar 

  27. Sudhir, P. and S. D. S. Murthy (2004) Effects of salt stress on basic processes of photosynthesis. Photosynth. 42: 481–486.

    Article  CAS  Google Scholar 

  28. Litchman, E., D. Steiner, and P. Bossard (2003) Photosynthetic and growth responses of three freshwater algae to phosphorus limitation and day length. Freshwater Biol. 48: 2141–2148.

    Article  CAS  Google Scholar 

  29. Kelly, L. A. (1993) Release rates and biological availability of phosphorus released from sediments receiving aquaculture wastes. Hydrobiol. 253: 367–372.

    Article  CAS  Google Scholar 

  30. Paerl, H. W. and J. C. Priscu (1998) Microbial phototrophic, heterotrophic, and diazotrophic activities associated with aggregates in the permanent ice cover of Lake Bonney, Antarctica. Microb. Ecol. 36: 221–230.

    Article  CAS  Google Scholar 

  31. Fukami, K., T. Nishijima, and Y. Ishida (1997) Stimulative and inhibitory effects of bacteria on the growth of microalgae. Hydrobiol. 358: 185–191.

    Article  Google Scholar 

  32. González-Fernández, C., B. Molinuevo-Salces, and M. C. García-González (2011) Nitrogen transformations under different conditions in open ponds by means of microalgae-bacteria consortium treating pig slurry. Bioresour. Technol. 102: 960–966.

    Article  Google Scholar 

  33. Hernandez, J. P., L. E. De-Bashan, D. J. Rodriguez, Y. Rodriguez, and Y. Bashan (2009) Growth promotion of the freshwater microalga Chlorella vulgaris by the nitrogen-fixing, plant growth-promoting bacterium Bacillus pumilus from and zone soils. Eur. J. Soil Biol. 45: 88–93.

    Article  CAS  Google Scholar 

  34. Sydney, E. B., T. E. D. Silva, A. Tokarski, A. C. Novak, J. C. D. Carvalho, A. L. Woiciecohwski, C. Larroche, and C. R. Soccol (2011) Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage. Appl. Energ. 88: 3291–3294.

    Article  CAS  Google Scholar 

  35. Ho, S. -H., W. -M. Chen, and J. -S. Chang (2010) Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production. Bioresour. Technol. 101: 8725–8730.

    Article  CAS  Google Scholar 

  36. Knothe, G. (2008) “Designer” biodiesel: Optimizing fatty ester composition to improve fuel properties. Energ. Fuel. 22: 1358–1364.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yoon-E Choi or Ji-Won Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryu, BG., Kim, E.J., Kim, HS. et al. Simultaneous treatment of municipal wastewater and biodiesel production by cultivation of Chlorella vulgaris with indigenous wastewater bacteria. Biotechnol Bioproc E 19, 201–210 (2014). https://doi.org/10.1007/s12257-013-0250-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0250-3

Keywords

Navigation