Skip to main content

Advertisement

Log in

Tenogenic differentiation of equine adipose-tissue-derived stem cells under the influence of tensile strain, growth differentiation factors and various oxygen tensions

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells have become extremely interesting for regenerative medicine and tissue engineering in the horse. Stem cell therapy has been proven to be a powerful and successful instrument, in particular for the healing of tendon lesions. We pre-differentiated equine adipose-tissue-derived stem cells (ASCs) in a collagen I gel scaffold by applying tensile strain, growth differentiation factors (GDFs) and various oxygen tensions in order to determine the optimal conditions for in vitro differentiation toward the tenogenic lineage. We compared the influence of 3% versus 21% oxygen tension, the use of GDF 5, GDF 6 and GDF 7 and the application of uniaxial tensile strain versus no mechanical stimulation on differentiation results as evaluated by cell morphology and by the expression of the tendon-relevant genes collagen I, collagen III, cartilage oligomeric matrix protein and scleraxis. The best results were obtained with an oxygen tension of 21%, tensile stimulation and supplementation with GDF 5 or GDF 7. This approach raises the hope that the in vivo application of pre-differentiated stem cells will improve healing and recovery time in comparison with treatment involving undifferentiated stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altman GH, Horan RL, Martin I, Farhadi J, Stark PRH, Volloch V, Richmond JC, Vunjak-Novacovic G, Kaplan DL (2001) Cell differentiation by mechanical stress. FASEB J 16:270–272

    PubMed  Google Scholar 

  • Amiel D, Frank C, Harwood F, Fronek J, Akeson W (1984) Tendons and ligaments: a morphological and biochemical comparison. J Orthop Res 1:257–265

    Article  PubMed  CAS  Google Scholar 

  • Arda K, Ciledag N, Aktas E, Aribas BK, Kose K (2011) Quantitative assessment of normal soft-tissue elasticity using shear-wave ultrasound elastography. Am J Roentgenol 197:532–536

    Article  Google Scholar 

  • Bailey CJ, Reid SW, Hodgson DR, Rose RJ (1999) Impact of injuries and disease on a cohort of two- and three-year-old thoroughbreds in training. Vet Rec 145:487–493

    Article  PubMed  CAS  Google Scholar 

  • Benhardt HA, Cosgriff-Hernandez EM (2009) The role of mechanical loading in ligament tissue engineering. Tissue Eng Part B Rev 15:467–475

    Article  PubMed  CAS  Google Scholar 

  • Bunnell BA, Flaat M, Gagliardi C, Patel B, Ripoll C (2008) Adipose-derived stem cells: isolation, expansion and differentiation. Methods 45:115–120

    Article  PubMed  CAS  Google Scholar 

  • Burk J, Brehm W (2011) Stammzellentherapie von Sehnenverletzungen—klinische Ergebnisse von 98 Fällen. Pferdeheilkunde 27:153–161

    Google Scholar 

  • Butler DL, Juncosa-Melvin N, Boivin GP, Galloway MT, Shearn JT, Gooch C, Awad H (2008) Functional tissue engineering for tendon repair: a multidisciplinary strategy using mesenchymal stem cells, bioscaffolds, and mechanical stimulation. J Orthop Res 26:1–9

    Article  PubMed  Google Scholar 

  • Chang J (2012) Studies in flexor tendon reconstruction: biomolecular modulation of tendon repair and tissue engineering. J Hand Surg 37A:552–561

    Google Scholar 

  • Chang J, Most D, Stelnicki E, Siebert JW, Longaker MT, Hui K, Lineaweaver WC (1997) Gene expression of transforming growth factor beta-1 in rabbit zone II flexor tendon wound healing: evidence for dual mechanisms of repair. Plast Reconstr Surg 100:937–944

    Article  PubMed  CAS  Google Scholar 

  • Chang J, Most D, Thunder R, Mehrara B, Longaker MT, Lineaweaver WC (1998) Molecular studies in flexor tendon wound healing: the role of basic fibroblast growth factor gene expression. J Hand Surg Am 23:1052–1058

    Article  PubMed  CAS  Google Scholar 

  • Chang J, Thunder R, Most D, Longaker MT, Lineaweaver WC (2000) Studies in flexor tendon wound healing: neutralizing antibody to TGF-beta1 increases postoperative range of motion. Plast Reconstr Surg 105:148–155

    Article  PubMed  CAS  Google Scholar 

  • Chicurel ME, Singer RH, Meyer CJ, Ingber DE (1998) Integrin binding and mechanical tension induce movement of mRNA and ribosomes to focal adhesions. Nature 392:730–733

    Article  PubMed  CAS  Google Scholar 

  • Chokalingam K, Juncosa-Melvin N, Hunter SA, Gooch C, Frede C, Florert J, Bradica G, Wenstrup R, Butler DL (2009) Tensile stimulation of murine stem cell-collagen sponge constructs increases collagen type I gene expression and linear stiffness. Tissue Eng Part A 15:2561–2570

    Article  PubMed  CAS  Google Scholar 

  • Csete M (2005) Oxygen in the cultivation of stem cells. Ann N Y Acad Sci 1049:1–8

    Article  PubMed  CAS  Google Scholar 

  • Del Bue M, Riccò S, Ramoni R, Conti V, Gnudi G, Grolli S (2008) Equine adipose-tissue derived mesenchymal stem cells and platelet concentrates: their association in vitro and in vivo. Vet Res Commun 32:51–55

    Article  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell Tissue Res 126:677–689

    CAS  Google Scholar 

  • Farng E, Urdaneta AR, Barba D, Esmende S, McAllister DR (2008) The effects of GDF-5 and uniaxial strain on mesenchymal stem cells in 3-D culture. Clin Orthop Relat Res 466:1930–1937

    Article  PubMed  Google Scholar 

  • Giancotti FG (1997) Integrin signaling: specificity and control of cell survival and cell cycle progression. Curr Opin Cell Biol 9:691–700

    Article  PubMed  CAS  Google Scholar 

  • Godwin EE, Young NJ, Dudhia J, Beamish IC, Smith RKW (2012) Implantation of bone marrow-derived mesenchymal stem cells demonstrates improved outcome in horses with overstrain injury of the superficial digital flexor tendon. Equine Vet J 44:25–32

    Article  PubMed  CAS  Google Scholar 

  • Goodenough DA, Paul DL (2003) Beyond the gap: functions of unpaired connexon channels. Mol Cell Biol 4:285–294

    CAS  Google Scholar 

  • Hsu C, Chang J (2004) Clinical perspective: growth factors in flexor tendon wound healing: clinical implications. J Hand Surg 29 A:551–563

    Google Scholar 

  • Juncosa-Melvin N, Shearn JT, Boivin GP, Gooch C, Galloway MT, West JR, Nirmalanandhan VS, Bradica G, Butler DL (2006) Effects of mechanical stimulation on the biomechanics and histology of stem cell–collagen sponge constructs for rabbit patellar tendon repair. Tissue Eng 12:2291–2300

    Article  PubMed  CAS  Google Scholar 

  • Kall S, Nöth U, Reimers K, Choi CYU, Muehlberger T, Allmeling C, Jahn S, Heymer A, Vogt PM (2004) In vitro Herstellung von Sehnenkonstrukten aus humanen mesenchymalen Stammzellen und einem Kollagen Typ I Gel. Handchir Mikrochir Plast Chir 36:205–211

    Article  PubMed  CAS  Google Scholar 

  • Katz AJ, Tholpady A, Tholpady SS, Shang H, Ogle RC (2005) Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. Stem Cells 23:412–423

    Article  PubMed  CAS  Google Scholar 

  • Koch TG, Berg LC, Betts DH (2009) Current and future regenerative medicine—principles, concepts, and therapeutic use of stem cell therapy and tissue engineering in equine medicine. Can Vet J 50:155–165

    PubMed  Google Scholar 

  • Kuo CK, Tuan RS (2008) Mechanoactive tenogenic differentiation of human mesenchymal stem cells. Tissue Eng Part A 14:1615–1627

    Article  PubMed  CAS  Google Scholar 

  • Lee JY, Zhou Z, Taub PJ, Ramcharan M, Li Y, Akinbiyi T, Maharam ER, Leong DJ, Laudier DM, Ruike T, Torina PJ, Zaidi M, Majeska RJ, Schaffler MB, Flatow EL, Sun HB, Agarwal S (2011) BMP-12 treatment of adult mesenchymal stem cells in vitro augments tendon-like tissue formation and defect repair in vivo. PLoS One 6:e17531

    Article  PubMed  CAS  Google Scholar 

  • McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6:483–495

    Article  PubMed  CAS  Google Scholar 

  • McNeilly C, Banes AJ, Benjamin M, Ralphs JR (1996) Tendon cells in vivo form a three dimensional network of cell processes linked by gap junctions. J Anat 189:593–600

    PubMed  Google Scholar 

  • Mulisch M, Welsch U (2010) Romeis-Mikroskopische Technik, 18th edn. Spektrum Akademischer, Heidelberg

    Google Scholar 

  • Nakagami H, Maeda K, Morishita R, Iguchi S, Nishikawa T, Takami Y, Kikuchi Y, Saito Y, Tamai K, Ogihara T, Kaneda Y (2005) Novel autologous cell therapy in ischemic limb disease through growth factor secretion by cultured adipose tissue-derived stromal cells. Arterioscler Thromb Vasc Biol 25:2542–2547

    Article  PubMed  CAS  Google Scholar 

  • Nirmalanandhan VS, Juncosa-Melvin N, Shearn JT, Boivin GP, Galloway MT, Gooch C, Bradica G, Butler DL (2009) Combined effects of scaffold stiffening and mechanical preconditioning cycles on construct biomechanics, gene expression, and tendon repair biomechanics. Tissue Eng Part A 15:2103–2111

    Article  PubMed  CAS  Google Scholar 

  • Nixon AJ, Dahlgren LA, Haupt JL, Yeager AE, Ward DL (2008) Effect of adipose-derived nucleated cell fractions on tendon repair in horses with collagenase-induced tendinitis. Am J Vet Res 69:928–937

    Article  PubMed  CAS  Google Scholar 

  • Park A, Hogan MV, Kesturu GS, James R, Balian G, Chhabra AB (2010) Adipose-derived mesenchymal stem cells treated with growth differentiation factor-5 express tendon-specific markers. Tissue Eng Part A 16:2941–2951

    Article  PubMed  CAS  Google Scholar 

  • Raabe O, Reich C, Wenisch S, Hild A, Burg-Roderfeld M, Siebert H, Arnhold S (2010) Hydrolyzed fish collagen induced chondrogenic differentiation of equine adipose tissue-derived stromal cells. Histochem Cell Biol 134:545–554

    Article  PubMed  CAS  Google Scholar 

  • Rickert M, Jung M, Adiyaman M, Richter W, Simank HG (2001) A growth and differentiation factor-5 (GDF-5)-coated suture stimulates tendon healing in an Achilles tendon model in rats. Growth Factors 19:115–126

    Article  PubMed  CAS  Google Scholar 

  • Riechert K, Labs K, Lindenhayn K, Sinha P (2001) Semiquantitative analysis of types I and III collagen from tendons and ligaments in a rabbit model. J Orthop Sci 6:68–74

    Article  PubMed  CAS  Google Scholar 

  • Sarasa-Renedo A, Chiquet M (2005) Mechanical signals regulating extracellular matrix gene expression in fibroblasts. Scand J Med Sci Sports 15:223–230

    Article  PubMed  CAS  Google Scholar 

  • Scott A, Danielson P, Abraham T, Fong G, Sampaio A, Underhill T (2011) Mechanical force modulates scleraxis expression in bioartificial tendons. J Musculoskelet Neuronal Interact 11:124–132

    PubMed  CAS  Google Scholar 

  • Shell K, Raabe O, Freitag C, Ohrndorf A, Christ HJ, Wenisch S, Arnhold S (2013) Comparison of equine adipose tissue-derived stem cell behaviour and differentiation potential under the influence of 3% and 21% oxygen tension. J Equine Vet Sci 33:74-82

    Article  Google Scholar 

  • Smith RKW, Korda M, Blunn GW, Goodship AE (2003) Isolation and implantation of autologous equine mesenchymal stem cells from bone marrow into the superficial digital flexor tendon as a potential novel treatment. Equine Vet J 35:99–102

    Article  PubMed  CAS  Google Scholar 

  • Stanley RL, Fleck RA, Becker DL, Goodship AE, Ralphs JR, Patterson-Kane JC (2007) Gap junction protein expression and cellularity: comparison of immature and adult equine digital tendons. J Anat 211:325–334

    Article  PubMed  CAS  Google Scholar 

  • Thorfinn J, Angelidis IK, Gigliello L, Pham HM, Lindsey D, Chang J (2012) Bioreactor optimization of tissue engineered rabbit flexor tendons in vivo. J Hand Surg Eur 37:109–114

    CAS  Google Scholar 

  • Uysal AC, Mizuno H (2010) Tendon regeneration and repair with adipose derived stem cells. Curr Stem Cell Res Ther 5:161–167

    Article  PubMed  CAS  Google Scholar 

  • Uysal AC, Mizuno H (2011) Differentiation of adipose-derived stem cells for tendon repair. Methods Mol Biol 702:443–451

    Article  PubMed  CAS  Google Scholar 

  • Watts AE, Yeager AE, Kopyov OV, Nixon AJ (2011) Fetal derived embryonic-like stem cells improve healing in a large animal flexor tendonitis model. Stem Cell Res Therapy 2:4

    Article  Google Scholar 

  • Webb K, Hitchcock R, Smeal R, Li W, Gray S, Tresco P (2006) Cyclic strain increases fibroblast proliferation, matrix accumulation, and elastic modulus of fibroblast-seeded polyurethane constructs. J Biomech 39:1136–1144

    Article  PubMed  Google Scholar 

  • Wolfman NM, Hattersley G, Cox K, Celeste AJ, Nelson R, Yamaji N, Dube JL, DiBlasio-Smith E, Nove J, Song JJ, Wozney JM, Rosen V (1997) Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5, 6, and 7, members of the TGFb gene family. J Clin Invest 100:321–330

    Article  PubMed  CAS  Google Scholar 

  • Woon CY, Kraus A, Raghavan SS, Pridgen BC, Megerle K, Pham H, Chang J (2011) Three-dimensional-construct bioreactor conditioning in human tendon tissue engineering. Tissue Eng Part A 17:2561–2572

    Article  PubMed  CAS  Google Scholar 

  • Yin Z, Chen X, Chen JL, Shen WL, Hieu Nguyen TM, Gao L, Ouyang HW (2010) The regulation of tendon stem cell differentiation by the alignment of nanofibers. Biomaterials 31:2163–2175

    Article  PubMed  CAS  Google Scholar 

  • Young NJ, Becker DL, Fleck RA, Goodship AE, Patterson-Kane JC (2009) Maturational alterations in gap junction expression and associated collagen synthesis in response to tendon function. Matrix Biol 28:311–323

    Article  PubMed  CAS  Google Scholar 

  • Zhang AY, Pham H, Ho F, Teng K, Longaker MT, Chang J (2004) Inhibition of TGF-beta-induced collagen production in rabbit flexor tendons. J Hand Surg Am 29:230–235

    Article  PubMed  Google Scholar 

  • Zhang AY, Bates SJ, Morrow E, Pham BV, Pham HM, Chang J (2009) Tissue engineering of flexor tendons: optimization and of acellularization and seeding. J Rehabil Res Dev 46:489–498

    Article  PubMed  Google Scholar 

  • Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Lena Kaiser, Annika Goessel, Sigrid Kettner, Anne Hild and Bärbel Bangel for excellent technical assistance. Special gratitude to Dr. Graeve and co-workers from Amedrix (Germany), who provided us with collagen I scaffolds free of charge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oksana Raabe.

Additional information

O. Raabe and K. Shell contributed equally to this work.

The work was funded by the German Research Community, Bonn, Germany and carries the project identification “AR333/6-1”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raabe, O., Shell, K., Fietz, D. et al. Tenogenic differentiation of equine adipose-tissue-derived stem cells under the influence of tensile strain, growth differentiation factors and various oxygen tensions. Cell Tissue Res 352, 509–521 (2013). https://doi.org/10.1007/s00441-013-1574-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-013-1574-1

Keywords

Navigation