Skip to main content
Log in

Hydrolyzed fish collagen induced chondrogenic differentiation of equine adipose tissue-derived stromal cells

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Adipose-derived stromal cells (ADSCs) are multipotent cells which, in the presence of appropriate stimuli, can differentiate into various lineages such as the osteogenic, adipogenic and chondrogenic. In this study, we investigated the effect of transforming growth factor beta 1 (TGF-β1) in comparison to hydrolyzed fish collagen in terms of the chondrogenic differentiation potential of ADSCs. ADSCs were isolated from subcutaneous fat of horses by liposuction. Chondrogenesis was investigated using a pellet culture system. The differentiation medium was either supplemented with TGF-β1 (5 ng/ml) or fish collagen (0.5 mg/ml) for a 3 week period. After the 3 weeks in vitro differentiation, RT-PCR and histological staining for proteoglycan synthesis and type II collagen were performed to evaluate the degree of chondrogenic differentiation and the formation of cartilaginous extracellular matrix (ECM). The differentiation of ADSCs induced by TGF-β1 showed a high expression of glycosaminoglycan (GAG). Histological analysis of cultures stimulated by hydrolyzed fish collagen demonstrated an even higher GAG expression than cultures stimulated under standard conditions by TGF-β1. The expression of cartilage-specific type II collagen and Sox9 was about the same in both stimulated cultures. In this study, chondrogenesis was as effectively induced by hydrolyzed fish collagen as it was successfully induced by TGF-β1. These findings demonstrated that hydrolyzed fish collagen alone has the potential to induce and maintain ADSCs-derived chondrogenesis. These results support the application of ADSCs in equine veterinary tissue engineering, especially for cartilage repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arnhold SJ, Goletz I, Klein H, Stumpf G, Beluche LA, Rohde C, Addicks K, Litzke LF (2007) Isolation and characterization of bone marrow-derived equine mesenchymal stem cells. Am J Vet Res 68:1095–1105

    Article  CAS  PubMed  Google Scholar 

  • Awad HA, Halvorsen YC, Gimble JM, Guilak F (2003) Effects of transforming growth factor beta1 and dexamethasone on the growth and chondrogenic differentiation of adipose-derived stromal cells. Tissue Eng 9:1301–1312

    Article  CAS  PubMed  Google Scholar 

  • Bello AE, Oesser S (2006) Collagen hydrolysate for the treatment of osteoarthritis and other joint disorders: a review of the literature. Curr Med Res Opin 22:2221–2232

    Article  CAS  PubMed  Google Scholar 

  • Benya PD, Shaffer JD (1982) Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30:215–224

    Article  CAS  PubMed  Google Scholar 

  • Bosnakovski D, Mizuno M, Kim G, Takagi S, Okumura M, Fujinaga T (2006) Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis. Biotechnol Bioeng 93:1152–1163

    Article  CAS  PubMed  Google Scholar 

  • Brief AA, Maurer SG, Di Cesare PE (2001) Use of glucosamine and chondroitin sulfate in the management of osteoarthritis. J Am Acad Orthop Surg 9:71–78

    CAS  PubMed  Google Scholar 

  • Chen CW, Tsai YH, Deng WP, Shih SN, Fang CL, Burch JG, Chen WH, Lai WF (2005) Type I and II collagen regulation of chondrogenic differentiation by mesenchymal progenitor cells. J Orthop Res 23:446–453

    Article  CAS  PubMed  Google Scholar 

  • Connelly JT, Wilson CG, Levenston ME (2008) Characterization of proteoglycan production and processing by chondrocytes and BMSCs in tissue engineered constructs. Osteoarthr Cartil 16:1092–1100

    Article  CAS  PubMed  Google Scholar 

  • Diekman BO, Rowland CR, Caplan AI, Lennon D, Guilak F (2009) Chondrogenesis of adult stem cells from adipose tissue and bone marrow: induction by growth factors and cartilage derived matrix. Tissue Eng A 16:523–533

    Article  Google Scholar 

  • Estes BT, Wu AW, Guilak F (2006) Potent induction of chondrocytic differentiation of human adipose-derived adult stem cells by bone morphogenetic protein 6. Arthritis Rheum 54:1222–1232

    Article  CAS  PubMed  Google Scholar 

  • Fortier LA, Nixon AJ, Williams J, Cable CS (1998) Isolation and chondrocytic differentiation of equine bone marrow-derived mesenchymal stem cells. Am J Vet Res 59:1182–1187

    CAS  PubMed  Google Scholar 

  • Goldring MB, Tsuchimochi K, Ijiri K (2006) The control of chondrogenesis. J Cell Biochem 97:33–44

    Article  CAS  PubMed  Google Scholar 

  • Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM (2001) Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol 189:54–63

    Article  CAS  PubMed  Google Scholar 

  • Hatakeyama Y, Tuan RS, Shum L (2004) Distinct functions of BMP4 and GDF5 in the regulation of chondrogenesis. J Cell Biochem 91:1204–1217

    Article  CAS  PubMed  Google Scholar 

  • Hegewald AA, Ringe J, Bartel J, Krüger I, Notter M, Barnewitz D, Kaps C, Sittinger M (2004) Hyaluronic acid and autologous synovial fluid induce chondrogenic differentiation of equine mesenchymal stem cells: a preliminary study. Tissue Cell 36:431–438

    Article  CAS  PubMed  Google Scholar 

  • Jeffcott LB, Rossdale PD, Freestone J, Frank CJ, Towers-Clark PF (1982) An assessment of wastage in thoroughbred racing from conception to 4 years of age. Equine Vet J 14:185–198

    Article  CAS  PubMed  Google Scholar 

  • Kelly GS (1998) The role of glucosamine sulfate and chondroitin sulfates in the treatment of degenerative joint disease. Altern Med Rev 3:27–39

    CAS  PubMed  Google Scholar 

  • Kisiday JD, Kopesky PW, Evans CH, Grodzinsky AJ, McIlwraith CW, Frisbie DD (2008) Evaluation of adult equine bone marrow- and adipose-derived progenitor cell chondrogenesis in hydrogel cultures. J Orthop Res 26:322–331

    Article  CAS  PubMed  Google Scholar 

  • Kopesky PW, Lee H, Vanderploeg EJ, Kisiday JD, Frisbie DD, Plaas AHK, Ortiz C, Grodzinsky AJ (2010) Adult equine bone marrow stromal cells produce a cartilage-like ECM mechanically superior to animal-matched adult chondrocytes. Matrix Biol 29:427–438

    Article  CAS  PubMed  Google Scholar 

  • Kuroda R, Usas A, Kubo S, Corsi K, Peng H, Rose T, Cummins J, Fu FH, Huard J (2006) Cartilage repair using bone morphogenetic protein 4 and muscle-derived stem cells. Arthritis Rheum 54:433–442

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre V, Huang W, Harley VR, Goodfellow PN, de Crombrugghe B (1997) SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene. Mol Cell Biol 17:2336–2346

    CAS  PubMed  Google Scholar 

  • Lin Y, Tian W, Chen X, Yan Z, Li Z, Qiao J, Liu L, Tang W, Zheng X (2005) Expression of exogenous or endogenous green fluorescent protein in adipose tissue-derived stromal cells during chondrogenic differentiation. Mol Cell Biochem 277:181–190

    Article  CAS  PubMed  Google Scholar 

  • Litzke LE, Wagner E, Baumgaertner W, Hetzel U, Josimović-Alasević O, Libera J (2004) Repair of extensive articular cartilage defects in horses by autologous chondrocyte transplantation. Ann Biomed Eng 32:57–69

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Doulabi BZ, Huang C, Bank RA, Helder MN (2010) Collagen type II enhances chondrogenesis in adipose tissue-derived stem cells by affecting cell shape. Tissue Eng A 16:81–90

    Article  CAS  Google Scholar 

  • McAlinden A, Johnstone B, Kollar J, Kazmi N, Hering TM (2008) Expression of two novel alternatively spliced COL2A1 isoforms during chondrocyte differentiation. Matrix Biol 27:254–266

    Article  CAS  PubMed  Google Scholar 

  • Moskowitz RW (2000) Role of collagen hydrolysate in bone and joint disease. Semin Arthritis Rheum 30:87–99

    Article  CAS  PubMed  Google Scholar 

  • Mueller MB, Tuan RS (2008) Functional characterization of hypertrophy in chondrogenesis of human mesenchymal stem cells. Arthritis Rheum 58:1377–1388

    Article  CAS  PubMed  Google Scholar 

  • Mueller MB, Fischer M, Zellner J, Berner A, Dienstknecht T, Prantl L, Kujat R, Nerlich M, Tuan RS, Angele P (2010) Hypertrophy in mesenchymal stem cell chondrogenesis: effect of TGF-beta isoforms and chondrogenic conditioning. Cells Tissues Organs 192:158–166

    Article  CAS  PubMed  Google Scholar 

  • Oesser S, Seifert J (2003) Stimulation of type II collagen biosynthesis and secretion in bovine chondrocytes cultured with degraded collagen. Cell Tissue Res 311:393–399

    CAS  PubMed  Google Scholar 

  • Park Y, Sugimoto M, Watrin A, Chiquet M, Hunziker EB (2005) BMP-2 induces the expression of chondrocyte-specific genes in bovine synovium-derived progenitor cells cultured in three-dimensional alginate hydrogel. Osteoarthr Cartil 13:527–536

    Article  CAS  PubMed  Google Scholar 

  • Piez KA, Gross J (1960) The amino acid composition of some fish collagens: the relations between composition and structure. J Biol Chem 235:995–998

    CAS  PubMed  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  • Schmitt B, Ringe J, Häupl T, Notter M, Manz R, Burmester G, Sittinger M, Kaps C (2003) BMP2 initiates chondrogenic lineage development of adult human mesenchymal stem cells in high-density culture. Differentiation 71:567–577

    Article  CAS  PubMed  Google Scholar 

  • Smith RKW, Korda M, Blunn GW, Goodship AE (2003) Isolation and implantation of autologous equine mesenchymal stem cells from bone marrow into the superficial digital flexor tendon as a potential novel treatment. Equine Vet J 35:99–102

    Article  CAS  PubMed  Google Scholar 

  • Stewart AA, Byron CR, Pondenis HC, Stewart MC (2008) Effect of dexamethasone supplementation on chondrogenesis of equine mesenchymal stem cells. Am J Vet Res 69:1013–1021

    Article  CAS  PubMed  Google Scholar 

  • Vidal MA, Kilroy GE, Lopez MJ, Johnson JR, Moore RM, Gimble JM (2007) Characterization of equine adipose tissue-derived stromal cells: adipogenic and osteogenic capacity and comparison with bone marrow-derived mesenchymal stromal cells. Vet Surg 36:613–622

    Article  PubMed  Google Scholar 

  • Vidal MA, Robinson SO, Lopez MJ, Paulsen DB, Borkhsenious O, Johnson JR, Moore RM, Gimble JM (2008) Comparison of chondrogenic potential in equine mesenchymal stromal cells derived from adipose tissue and bone marrow. Vet Surg 37:713–724

    Article  PubMed  Google Scholar 

  • Vieira N, Brandalise V, Zucconi E, Secco M, Strauss B, Zatz M (2009) Isolation, characterization and differentiation potential of canine adipose-derived stem cells. Cell Transplant 19:279–289

    Article  PubMed  Google Scholar 

  • Williams KJ, Picou AA, Kish SL, Giraldo AM, Godke RA, Bondioli KR (2008) Isolation and characterization of porcine adipose tissue-derived adult stem cells. Cells Tissues Organs 188:251–258

    Article  PubMed  Google Scholar 

  • Worster AA, Nixon AJ, Brower-Toland BD, Williams J (2000) Effect of transforming growth factor beta1 on chondrogenic differentiation of cultured equine mesenchymal stem cells. Am J Vet Res 61:1003–1010

    Article  CAS  PubMed  Google Scholar 

  • Worster AA, Brower-Toland BD, Fortier LA, Bent SJ, Williams J, Nixon AJ (2001) Chondrocytic differentiation of mesenchymal stem cells sequentially exposed to transforming growth factor-beta1 in monolayer and insulin-like growth factor-I in a three-dimensional matrix. J Orthop Res 19:738–749

    Article  CAS  PubMed  Google Scholar 

  • Yoo JU, Barthel TS, Nishimura K, Solchaga L, Caplan AI, Goldberg VM, Johnstone B (1998) The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells. J Bone Joint Surg Am 80:1745–1757

    CAS  PubMed  Google Scholar 

  • Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Annika Damm, Sigrid Kettner and Carina Crispens for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Raabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raabe, O., Reich, C., Wenisch, S. et al. Hydrolyzed fish collagen induced chondrogenic differentiation of equine adipose tissue-derived stromal cells. Histochem Cell Biol 134, 545–554 (2010). https://doi.org/10.1007/s00418-010-0760-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-010-0760-4

Keywords

Navigation