Skip to main content
Log in

Genome-wide identification and characterization of novel lncRNAs in Populus under nitrogen deficiency

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Long non-coding RNAs (lncRNAs) have been identified as important regulatory factors of gene expression in eukaryotic species, such as Homo sapiens, Arabidopsis thaliana, and Oryza sativa. However, the systematic identification of potential lncRNAs in trees is comparatively rare. In particular, the characteristics, expression, and regulatory roles of lncRNAs in trees under nutrient stress remain largely unknown. A genome-wide strategy was used in this investigation to identify and characterize novel and low-nitrogen (N)-responsive lncRNAs in Populus tomentosa; 388 unique lncRNA candidates belonging to 380 gene loci were detected and only seven lncRNAs were found to belong to seven conserved non-coding RNA families indicating the majority of P. tomentosa lncRNAs are species-specific. In total, 126 lncRNAs were significantly altered under low-N stress; 8 were repressed, and 118 were induced. Furthermore, 9 and 5 lncRNAs were detected as precursors of 11 known and 14 novel Populus miRNAs, respectively, whereas 4 lncRNAs were targeted by 29 miRNAs belonging to 5 families, including 22 conserved and 7 non-conserved miRNAs. In addition, 15 antisense lncRNAs were identified to be generated from opposite strands of 14 corresponding protein-coding genes. In total, 111 protein-coding genes with regions complementary to 38 lncRNAs were also predicted with some lncRNAs corresponding to multiple genes and vice versa, and their functions were annotated, which further demonstrated the complex regulatory relationship between lncRNAs and protein-coding genes in plants. Moreover, an interaction network among lncRNAs, miRNAs, and mRNAs was investigated. These findings enrich our understanding of lncRNAs in Populus, expand the methods of miRNA identification. Our results present the first global characterization of lncRNAs and their potential target genes in response to nitrogen stress in trees, which provides more information on low-nutrition adaptation mechanisms in woody plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bardou F, Ariel F, Simpson CG, Romero-Barrios N, Laporte P, Balzergue S, Brown JW, Crespi M (2014) Long noncoding RNA modulates alternative splicing regulators in Arabidopsis. Dev Cell 30:166–176

    Article  CAS  PubMed  Google Scholar 

  • Britto-Kido Sde A, Ferreira Neto JR, Pandolfi V, Marcelino-Guimaraes FC, Nepomuceno AL, Vilela Abdelnoor R, Benko-Iseppon AM, Kido EA (2013) Natural antisense transcripts in plants: a review and identification in soybean infected with Phakopsora pachyrhizi SuperSAGE library.  Sci World J 2013:219798

    Google Scholar 

  • Celton JM, Gaillard S, Bruneau M, Pelletier S, Aubourg S, Martin-Magniette ML, Navarro L, Laurens F, Renou JP (2014) Widespread anti-sense transcription in apple is correlated with siRNA production and indicates a large potential for transcriptional and/or post-transcriptional control. New Phytol 203:287–299

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Quan M, Zhang D (2015a) Genome-wide identification of novel long non-coding RNAs in Populus tomentosa tension wood, opposite wood and normal wood xylem by RNA-seq. Planta 241:125–143

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Bao H, Wu Q, Wang Y (2015b) Transcriptome-wide identification of miRNA targets under nitrogen deficiency in Populus tomentosa using degradome sequencing. Int J Mol Sci 16:13937–13958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crawford NM, Forde BG (2002) Molecular and developmental biology of inorganic nitrogen nutrition. Arabidopsis Book 1:e0011

    Article  PubMed  PubMed Central  Google Scholar 

  • Csorba T, Questa JI, Sun Q, Dean C (2014) Antisense COOLAIR mediates the coordinated switching of chromatin states at FLC during vernalization. Proc Natl Acad Sci USA 111:16160–16165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39:W155–W159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dietrich P, Anschutz U, Kugler A, Becker D (2010) Physiology and biophysics of plant ligand-gated ion channels. Plant Biol (Stuttg) 12(Suppl 1):80–93

    Article  CAS  Google Scholar 

  • Du Q, Gong C, Pan W, Zhang D (2013) Development and application of microsatellites in candidate genes related to wood properties in the Chinese white poplar (Populus tomentosa Carr.). DNA Res 20:31–44

    Article  CAS  PubMed  Google Scholar 

  • Fan XN, Zhang SW (2015) lncRNA-MFDL: identification of human long non-coding RNAs by fusing multiple features and using deep learning. Mol BioSyst 11:892–897

    Article  CAS  PubMed  Google Scholar 

  • Fischer JJ, Beatty PH, Good AG, Muench DG (2013) Manipulation of microRNA expression to improve nitrogen use efficiency. Plant Sci 210:70–81

    Article  CAS  PubMed  Google Scholar 

  • Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, Garcia JA, Paz-Ares J (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39:1033–1037

    Article  CAS  PubMed  Google Scholar 

  • Gan Q, Li D, Liu G, Zhu L (2012) Identification of potential antisense transcripts in rice using conventional microarray. Mol Biotechnol 51:37–43

    Article  CAS  PubMed  Google Scholar 

  • Guo YL, Fitz J, Schneeberger K, Ossowski S, Cao J, Weigel D (2011) Genome-wide comparison of nucleotide-binding site-leucine-rich repeat-encoding genes in Arabidopsis. Plant Physiol 157:757–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han L, Zhang K, Shi Z, Zhang J, Zhu J, Zhu S, Zhang A, Jia Z, Wang G, Yu S, Pu P, Dong L, Kang C (2012) LncRNA profile of glioblastoma reveals the potential role of lncRNAs in contributing to glioblastoma pathogenesis. Int J Oncol 40:2004–2012

    CAS  PubMed  Google Scholar 

  • Heo JB, Sung S (2011) Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331:76–79

    Article  CAS  PubMed  Google Scholar 

  • Heo JB, Lee YS, Sung S (2013) Epigenetic regulation by long noncoding RNAs in plants. Chromosome Res 21:685–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hung T, Chang HY (2010) Long noncoding RNA in genome regulation: prospects and mechanisms. RNA Biol 7:582–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imamura S, Kanesaki Y, Ohnuma M, Inouye T, Sekine Y, Fujiwara T, Kuroiwa T, Tanaka K (2009) R2R3-type MYB transcription factor, CmMYB1, is a central nitrogen assimilation regulator in Cyanidioschyzon merolae. Proc Natl Acad Sci USA 106:12548–12553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jalali S, Bhartiya D, Lalwani MK, Sivasubbu S, Scaria V (2013) Systematic transcriptome wide analysis of lncRNA-miRNA interactions. PLoS One 8:e53823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansson S, Douglas CJ (2007) Populus: a model system for plant biology. Ann Rev Plant Biol 58:435–458

    Article  CAS  Google Scholar 

  • Jorgenson MA, Chen Y, Yahashiri A, Popham DL, Weiss DS (2014) The bacterial septal ring protein RlpA is a lytic transglycosylase that contributes to rod shape and daughter cell separation in Pseudomonas aeruginosa. Mol Microbiol 93:113–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juan L, Wang G, Radovich M, Schneider BP, Clare SE, Wang Y, Liu Y (2013) Potential roles of microRNAs in regulating long intergenic noncoding RNAs. BMC Med Genomics 6(Suppl 1):S7

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelleher DJ, Gilmore R (1994) The Saccharomyces cerevisiae oligosaccharyltransferase is a protein complex composed of Wbp1p, Swp1p, and four additional polypeptides. J Biol Chem 269:12908–12917

    CAS  PubMed  Google Scholar 

  • Kohler A, Rinaldi C, Duplessis S, Baucher M, Geelen D, Duchaussoy F, Meyers BC, Boerjan W, Martin F (2008) Genome-wide identification of NBS resistance genes in Populus trichocarpa. Plant Mol Biol 66:619–636

    Article  CAS  PubMed  Google Scholar 

  • Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei L, Gao G (2007) CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res 35:W345–W349

    Article  PubMed  PubMed Central  Google Scholar 

  • Li L, Eichten SR, Shimizu R, Petsch K, Yeh CT, Wu W, Chettoor AM, Givan SA, Cole RA, Fowler JE, Evans MM, Scanlon MJ, Yu J, Schnable PS, Timmermans MC, Springer NM, Muehlbauer GJ (2014) Genome-wide discovery and characterization of maize long non-coding RNAs. Genome Biol 15:R40

    Article  PubMed  PubMed Central  Google Scholar 

  • Li D, Shao F, Lu S (2015) Identification and characterization of mRNA-like noncoding RNAs in Salvia miltiorrhiza. Planta 241:1131–1143

    Article  CAS  PubMed  Google Scholar 

  • Liang G, He H, Yu D (2012) Identification of nitrogen starvation-responsive microRNAs in Arabidopsis thaliana. PLoS One 7:e48951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Jung C, Xu J, Wang H, Deng S, Bernad L, Arenas-Huertero C, Chua NH (2012) Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis. Plant Cell 24:4333–4345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Hao L, Li D, Zhu L, Hu S (2015) Long non-coding RNAs and their biological roles in plants. Genom Proteom Bioinform 13:137–147

    Article  Google Scholar 

  • Lu C, Jeong DH, Kulkarni K, Pillay M, Nobuta K, German R, Thatcher SR, Maher C, Zhang L, Ware D, Liu B, Cao X, Meyers BC, Green PJ (2008) Genome-wide analysis for discovery of rice microRNAs reveals natural antisense microRNAs (nat-miRNAs). Proc Natl Acad Sci USA 105:4951–4956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma J, Morrow DJ, Fernandes J, Walbot V (2006) Comparative profiling of the sense and antisense transcriptome of maize lines. Genome Biol 7:R22

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ, Griffiths-Jones S, Jacobsen SE, Mallory AC, Martienssen RA, Poethig RS, Qi Y, Vaucheret H, Voinnet O, Watanabe Y, Weigel D, Zhu JK (2008) Criteria for annotation of plant MicroRNAs. Plant Cell 20:3186–3190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nawrocki EP (2014) Annotating functional RNAs in genomes using infernal. Methods Mol Biol 1097:163–197

    Article  CAS  PubMed  Google Scholar 

  • Nemie-Feyissa D, Olafsdottir SM, Heidari B, Lillo C (2014) Nitrogen depletion and small R3-MYB transcription factors affecting anthocyanin accumulation in Arabidopsis leaves. Phytochemistry 98:34–40

    Article  CAS  PubMed  Google Scholar 

  • Nischal L, Mohsin M, Khan I, Kardam H, Wadhwa A, Abrol YP, Iqbal M, Ahmad A (2012) Identification and comparative analysis of microRNAs associated with low-N tolerance in rice genotypes. PLoS One 7:e50261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136:629–641

    Article  CAS  PubMed  Google Scholar 

  • Ragu C, Elain G, Mylonas E, Ottolenghi C, Cagnard N, Daegelen D, Passegue E, Vainchenker W, Bernard OA, Penard-Lacronique V (2010) The transcription factor Srf regulates hematopoietic stem cell adhesion. Blood 116:4464–4473

    Article  CAS  PubMed  Google Scholar 

  • Rapicavoli NA, Poth EM, Zhu H, Blackshaw S (2011) The long noncoding RNA Six3OS acts in trans to regulate retinal development by modulating Six3 activity. Neural Dev 6:32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren Y, Chen L, Zhang Y, Kang X, Zhang Z, Wang Y (2013) Identification and characterization of salt-responsive microRNAs in Populus tomentosa by high-throughput sequencing. Biochimie 95:743–750

    Article  CAS  PubMed  Google Scholar 

  • Ren Y, Sun F, Hou J, Chen L, Zhang Y, Kang X, Wang Y (2015) Differential profiling analysis of miRNAs reveals a regulatory role in low N stress response of Populus. Funct Integr Genom 15:93–105

    Article  CAS  Google Scholar 

  • Rennenberg H, Wildhagen H, Ehlting B (2010) Nitrogen nutrition of poplar trees. Plant Biol (Stuttg) 12:275–291

    Article  CAS  Google Scholar 

  • Roberts A, Pimentel H, Trapnell C, Pachter L (2011) Identification of novel transcripts in annotated genomes using RNA-Seq. Bioinformatics 27:2325–2329

    Article  CAS  PubMed  Google Scholar 

  • Saito R, Smoot ME, Ono K, Ruscheinski J, Wang PL, Lotia S, Pico AR, Bader GD, Ideker T (2012) A travel guide to Cytoscape plugins. Nat Methods 9:1069–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shafiq S, Li J, Sun Q (2015) Functions of plants long non-coding RNAs. Biochim Biophys Acta 1859:155–162

    Article  PubMed  Google Scholar 

  • Shuai P, Liang D, Tang S, Zhang Z, Ye CY, Su Y, Xia X, Yin W (2014) Genome-wide identification and functional prediction of novel and drought-responsive lincRNAs in Populus trichocarpa. J Exp Bot 65:4975–4983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Y, Ma K, Ci D, Chen Q, Tian J, Zhang D (2013) Sexual dimorphism floral development in dioecious plants revealed by transcriptome, phytohormone, and DNA methylation analysis in Populus tomentosa. Plant Mol Biol 83:559–576

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Chen Q, Ci D, Shao X, Zhang D (2014) Effects of high temperature on photosynthesis and related gene expression in poplar. BMC Plant Biol 14:11

    Article  Google Scholar 

  • Song A, Wang L, Chen S, Jiang J, Guan Z, Li P, Chen F (2015) Identification of nitrogen starvation-responsive microRNAs in Chrysanthemum nankingense. Plant Physiol Biochem 91:41–48

    Article  CAS  PubMed  Google Scholar 

  • Swope SL, Moss SJ, Raymond LA, Huganir RL (1999) Regulation of ligand-gated ion channels by protein phosphorylation. Adv Second Messenger Phosphoprotn Res 33:49–78

    Article  CAS  Google Scholar 

  • Tafer H, Hofacker IL (2008) RNAplex: a fast tool for RNA-RNA interaction search. Bioinformatics 24:2657–2663

    Article  CAS  PubMed  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uberto R, Moomaw EW (2013) Protein similarity networks reveal relationships among sequence, structure, and function within the Cupin superfamily. PLoS One 8:e74477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valdes-Lopez O, Yang SS, Aparicio-Fabre R, Graham PH, Reyes JL, Vance CP, Hernandez G (2010) MicroRNA expression profile in common bean (Phaseolus vulgaris) under nutrient deficiency stresses and manganese toxicity. New Phytol 187:805–818

    Article  CAS  PubMed  Google Scholar 

  • Vidal EA, Gutierrez RA (2008) A systems view of nitrogen nutrient and metabolite responses in Arabidopsis. Curr Opin Plant Biol 11:521–529

    Article  CAS  PubMed  Google Scholar 

  • Vidal EA, Tamayo KP, Gutierrez RA (2010) Gene networks for nitrogen sensing, signaling, and response in Arabidopsis thaliana. Wiley Interdiscip Rev Syst Biol Med 2:683–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43:904–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XJ, Gaasterland T, Chua NH (2005) Genome-wide prediction and identification of cis-natural antisense transcripts in Arabidopsis thaliana. Genome Biol 6:R30

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Song X, Glass CK, Rosenfeld MG (2011) The long arm of long noncoding RNAs: roles as sensors regulating gene transcriptional programs. Cold Spring Harb Perspect Biol 3:a003756

    PubMed  PubMed Central  Google Scholar 

  • Wang YY, Hsu PK, Tsay YF (2012) Uptake, allocation and signaling of nitrate. Trends Plant Sci 17:458–467

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhang C, Hao Q, Sha A, Zhou R, Zhou X, Yuan L (2013) Elucidation of miRNAs-mediated responses to low nitrogen stress by deep sequencing of two soybean genotypes. PLoS One 8:e67423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Chung PJ, Liu J, Jang IC, Kean MJ, Xu J, Chua NH (2014) Genome-wide identification of long noncoding natural antisense transcripts and their responses to light in Arabidopsis. Genome Res 24:444–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Wu B, Chen C, Lu S (2015) Identification of mRNA-like non-coding RNAs and validation of a mighty one named MAR in Panax ginseng. J Integr Plant Biol 57:256–270

    Article  CAS  PubMed  Google Scholar 

  • Wei H, Yordanov YS, Georgieva T, Li X, Busov V (2013) Nitrogen deprivation promotes Populus root growth through global transcriptome reprogramming and activation of hierarchical genetic networks. New Phytol 200:483–497

    Article  CAS  PubMed  Google Scholar 

  • Wen J, Parker BJ, Weiller GF (2007) In Silico identification and characterization of mRNA-like noncoding transcripts in Medicago truncatula. In Silico Biol 7:485–505

    CAS  PubMed  Google Scholar 

  • Wight M, Werner A (2013) The functions of natural antisense transcripts. Essays Biochem 54:91–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu B, Li Y, Yan H, Ma Y, Luo H, Yuan L, Chen S, Lu S (2012) Comprehensive transcriptome analysis reveals novel genes involved in cardiac glycoside biosynthesis and mlncRNAs associated with secondary metabolism and stress response in Digitalis purpurea. BMC Genom 13:15

    Article  CAS  Google Scholar 

  • Wu HJ, Wang ZM, Wang M, Wang XJ (2013) Widespread long noncoding RNAs as endogenous target mimics for microRNAs in plants. Plant Physiol 161:1875–1884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wunderlich M, Gross-Hardt R, Schoffl F (2014) Heat shock factor HSFB2a involved in gametophyte development of Arabidopsis thaliana and its expression is controlled by a heat-inducible long non-coding antisense RNA. Plant Mol Biol 85:541–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Y, Zhang L, Jiang Y, Xu T, Mei Q, Wang H, Qin R, Zou Y, Hu G, Chen J, Lu Y (2015) LncRNA and mRNA interaction study based on transcriptome profiles reveals potential core genes in the pathogenesis of human glioblastoma multiforme. J Cancer Res Clin Oncol 141:827–838

    Article  CAS  PubMed  Google Scholar 

  • Zhai R, Feng Y, Wang H, Zhan X, Shen X, Wu W, Zhang Y, Chen D, Dai G, Yang Z, Cao L, Cheng S (2013) Transcriptome analysis of rice root heterosis by RNA-Seq. BMC Genom 14:19

    Article  CAS  Google Scholar 

  • Zhang YC, Chen YQ (2013) Long noncoding RNAs: new regulators in plant development. Biochem Biophys Res Commun 436:111–114

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Thomma BP (2013) Structure-function aspects of extracellular leucine-rich repeat-containing cell surface receptors in plants. J Integr Plant Biol 55:1212–1223

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Chen X, Wang C, Xu Z, Wang Y, Liu X, Kang Z, Ji W (2013a) Long non-coding genes implicated in response to stripe rust pathogen stress in wheat (Triticum aestivum L.). Mol Biol Rep 40:6245–6253

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Lii Y, Wu Z, Polishko A, Zhang H, Chinnusamy V, Lonardi S, Zhu JK, Liu R, Jin H (2013b) Mechanisms of small RNA generation from cis-NATs in response to environmental and developmental cues. Mol Plant 6:704–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Han Z, Guo Q, Liu Y, Zheng Y, Wu F, Jin W (2014a) Identification of maize long non-coding RNAs responsive to drought stress. PLoS One 9:e98958

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang YC, Liao JY, Li ZY, Yu Y, Zhang JP, Li QF, Qu LH, Shu WS, Chen YQ (2014b) Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice. Genome Biol 15:512

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Xu Z, Mo Q, Zou C, Li W, Xu Y, Xie C (2013) Combined small RNA and degradome sequencing reveals novel miRNAs and their targets in response to low nitrate availability in maize. Ann Bot 112:633–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Cheung MY, Zhang Q, Lei CL, Zhang SH, Sun SS, Lam HM (2009) A novel simple extracellular leucine-rich repeat (eLRR) domain protein from rice (OsLRR1) enters the endosomal pathway and interacts with the hypersensitive-induced reaction protein 1 (OsHIR1). Plant Cell Environ 32:1804–1820

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Program for Changjiang Scholars and Innovative Research Team in University (No. IRT13047), the 111 Project (No. B13007), and the National Natural Science Foundation of China (Nos. 31470668, 31370658 and 31200511).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanwei Wang.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Data archiving statement

RNA-Seq data of P. tomentosa treated or untreated with low-N stress can be available at the NIH Short Read Archive database (http://www.ncbi.nlm.nih.gov/sra) under the accession number SRP063920 (Alias: PRJNA296440).

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Wang, C., Bao, H. et al. Genome-wide identification and characterization of novel lncRNAs in Populus under nitrogen deficiency. Mol Genet Genomics 291, 1663–1680 (2016). https://doi.org/10.1007/s00438-016-1210-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-016-1210-3

Keywords

Navigation